Skip to main content

Biotechnological Strategies for Development of Aflatoxin-Free Crops

  • Chapter
  • First Online:
Nutritional Quality Improvement in Plants

Abstract

Aflatoxins are secondary metabolites produced by the fungal genus Aspergillus (mainly A. flavus and A. parasiticus) that contaminate various agricultural commodities, but most prevalent in maize, groundnut, and cotton. Considered to be potent carcinogens and teratogens to humans and farm animals, aflatoxin contamination gets accentuated by hot and dry weather conditions, insect feeding and mechanical damage during and after harvest, and improper storage conditions. Growing global concerns about aflatoxin contamination have prompted search for effective control measures and specific regulations to limit exposure to these mycotoxins. Cultural practices include use of resistant varieties; control of insect pests, timely harvesting, proper drying, storage, sorting, and cleaning of harvested produce curtail aflatoxin contamination to some extent, and biological control strategies such as use of atoxigenic A. flavus strains have proven efficient in preventing infection by aflatoxin-producing strains. Genetic engineering for aflatoxin resistance through gene overexpression and recent development in area of transgenics through host-induced gene silencing of aflatoxin biosynthesis pathway genes have provided promising results in several crops such as cotton, corn, and groundnut. This book’s chapter provides comprehensive overview on the various strategies and also updates the status of research to achieve aflatoxin resistance in crop plants. The role of various factors affecting aflatoxin contamination is also discussed that help to take appropriate measures for successful control of aflatoxin resistance. The availability of advanced molecular techniques, cutting edge tools and technologies provides greater potential to the development of markers and QTLs for aflatoxin resistance speeding up the development of durable aflatoxin-resistant varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HK, Zablotowicz RM, Bruns HA, Abel CA (2006) Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates. Biocontrol Sci Technol 16(5):437–449

    Article  Google Scholar 

  • Abbas HK, Weaver MA, Horn BW, Carbone I, Monacell JT, Shier WT (2011) Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn. Toxin Rev 30(2–3):59–70

    Article  CAS  Google Scholar 

  • Abbas HK, Zablotowicz RM, Horn BW, Phillips NA, Johnson BJ, Jin X et al (2012) Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:198–208. https://doi.org/10.1080/19440049.2010.544680

    Article  CAS  Google Scholar 

  • Abdel-Hadi AM, Caley DP, Carter DR, Magan N (2011) Control of aflatoxin production of Aspergillus flavus and Aspergillus parasiticus using RNA silencing technology by targeting aflD (nor-1) gene. Toxins 3(6):647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Accinelli C, Saccà ML, Abbas HK, Zablotowicz RM, Wilkinson JR (2009) Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus. Bioresour Technol 100(17):3997–4004

    Article  CAS  PubMed  Google Scholar 

  • Accinelli C, Abbas HK, Vicari A, Shier WT (2016) Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn. Pest Manag Sci 72(8):1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Adye J, Mateles R (1964) Incorporation of labelled compounds into aflatoxins. Biochim Biophys Acta (BBA) Gen Subjects 86(2):418–420. https://doi.org/10.1016/0304-4165(64)90077-7

  • Affeldt KJ, Carrig J, Amare M, Keller NP (2014) Global survey of canonical Aspergillus flavus G protein-coupled receptors. mBio 5(5):e01501–01514

    Google Scholar 

  • Alakonya AE, Monda EO (2013) A new approach in aflatoxin management in Africa: targeting aflatoxin/sterigmatocystin biosynthesis in Aspergillus species by RNA silencing technique. Aflatoxins Recent Adv Future 41–57

    Google Scholar 

  • Alberts J, Lilly M, Rheeder J, Burger H, Shephard G, Gelderblom W (2017) Technological and community-based methods to reduce mycotoxin exposure. Food Control 73:101–109

    Article  CAS  Google Scholar 

  • Anderson W, Holbrook C, Wilson D, Matheron M (1995) Evaluation of preharvest aflatoxin contamination in several potentially resistant peanut genotypes. Peanut Sci 22(1):29–32

    Article  CAS  Google Scholar 

  • Anderson W, Holbrook C, Wilson D (1996) Development of greenhouse screening for resistance to Aspergillus parasiticus infection and preharvest aflatoxin contamination in peanut. Mycopathologia 135(2):115–118

    Article  CAS  PubMed  Google Scholar 

  • Arias RS, Dang PM, Sobolev VS (2015) RNAi-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem. JoVE 106:e53398

    Google Scholar 

  • Arunyanark A, Jogloy S, Wongkaew S, Akkasaeng C, Vorasoot N, Kesmala T, Patanothai A (2010) Heritability of aflatoxin resistance traits and correlation with drought tolerance traits in peanut. Field Crops Res 117(2–3):258–264

    Article  Google Scholar 

  • Atehnkeng J, Ojiambo PS, Donner M, Ikotun T, Sikora RA, Cotty PJ, Bandyopadhyay R (2008) Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int J Food Microbiol 122(1):74–84. https://doi.org/10.1016/j.ijfoodmicro.2007.11.062

    Article  PubMed  Google Scholar 

  • Atehnkeng J, Ojiambo PS, Cotty PJ, Bandyopadhyay R (2014) Field efficacy of a mixture of atoxigenic Aspergillus flavus link: Fr vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biol Control 72:62–70. https://doi.org/10.1016/j.biocontrol.2014.02.009

    Article  Google Scholar 

  • Azaizeh HA, Pettit RE, Sarr BA, Phillips T (1990) Effect of peanut tannin extracts on growth of Aspergillus parasiticus and aflatoxin production. Mycopathologia 110(3):125–132

    Article  CAS  PubMed  Google Scholar 

  • Baker R, Brown R, Chen Z-Y, Cleveland T, Fakhoury A (2009) A maize lectin-like protein with antifungal activity against Aspergillus flavus. J Food Prot 72(1):120–127

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay R, Cotty PJ (2013) In: Unnevehr L, Grace D (eds) Biological controls for aflatoxin reduction, vol 20. International Food Policy Res Institute, Washington, DC, pp 43–44

    Google Scholar 

  • Bandyopadhyay R, Ortega-Beltran A, Akande A, Mutegi C, Atehnkeng J, Kaptoge L, Senghor A, Adhikari B, Cotty P (2016) Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change. World Mycotoxin J 9(5):771–789

    Article  Google Scholar 

  • Bankole SA, Adenusi AA, Lawal O, Adesanya O (2010) Occurrence of aflatoxin B1 in food products derivable from ‘egusi’melon seeds consumed in southwestern Nigeria. Food Control 21(7):974–976

    Article  CAS  Google Scholar 

  • Battilani P, Leggieri MC, Rossi V, Giorni P (2013) AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin B1 contamination in maize. Comput Electron Agric 94:38–46

    Article  Google Scholar 

  • Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36(1):1–24. https://doi.org/10.1111/j.1574-6976.2011.00285.x

    Article  CAS  PubMed  Google Scholar 

  • Bedre R, Rajasekaran K, Mangu VR, Timm LES, Bhatnagar D, Baisakh N (2015) Genomewide transcriptome analysis of cotton (Gossypium hirsutum L.) identifies candidate gene signatures in response to aflatoxin producing fungus Aspergillus flavus. PLoS One 10(9):e0138025

    Google Scholar 

  • Bello HT (2007) Phenotypic and genotypic evaluation of generations and recombinant inbred lines for response to aflatoxin. Doctoral dissertation, Texas A&M University

    Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JW, Papa KE (1988) The aflatoxigenic Aspergillus spp. Genet Plant Pathogenic Fungi. https://doi.org/10.1016/b978-0-12-033706-4.50022-0

  • Bennett JW, Rubin PL, Lee LS, Chen PN (1979) Influence of trace elements and nitrogen sources on versicolorin production by a mutant strain of Aspergillus parasiticus. Mycopathologia 69(3):161–166. https://doi.org/10.1007/bf00452829

    Article  CAS  PubMed  Google Scholar 

  • Berthiller F, Cramer B, Iha MH, Krska R, Lattanzio VMT, MacDonald S, Malone RJ, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier SA (2018) Developments in mycotoxin analysis: an update for 2016–2017. World Mycotoxin J 11(1):5–32. https://doi.org/10.3920/wmj2017.2250

    Article  CAS  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 47(3):438

    Article  CAS  Google Scholar 

  • Bhatnagar D, Rajasekaran K, Gilbert M, Cary JW, Magan N (2018) Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination. World Mycotoxin J 11(1):47–72

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK (2015) Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci 234:119–132

    Article  CAS  PubMed  Google Scholar 

  • Blankenship P, Cole R, Sanders T (1985) Comparative susceptibility of four experimental peanut lines and the cultivar Florunner to preharvest aflatoxin contamination. Peanut Sci 12(2):70–72

    Article  Google Scholar 

  • Bock CH, Cotty PJ (1999) Wheat seed colonized with atoxigenic Aspergillus flavus: characterization and production of a biopesticide for aflatoxin control. Biocontrol Sci Technol 9(4):529–543. https://doi.org/10.1080/09583159929497

    Article  Google Scholar 

  • Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3(2):527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgemeister C, Adda C, Sétamou M, Hell K, Djomamou B, Markham R, Cardwell K (1998) Timing of harvest in maize: effects on post harvest losses due to insects and fungi in central Benin, with particular reference to Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). Agric Ecosyst Environ 69(3):233–242

    Article  Google Scholar 

  • Bressac B, Puisieux A, Kew M, Volkmann M, Bozcall S, Mura JB, de la Monte S, Carlson R, Blum H, Wands J (1991) p53 mutation in hepatocellular carcinoma after aflatoxin exposure. The Lancet 338(8779):1356–1359

    Article  Google Scholar 

  • Brodhagen M, Keller NP (2006) Signalling pathways connecting mycotoxin production and sporulation. Mol Plant Pathol 7(4):285–301. https://doi.org/10.1111/j.1364-3703.2006.00338.x

    Article  CAS  PubMed  Google Scholar 

  • Brooks TD, Williams WP, Windham GL, Willcox MC, Abbas HK (2005) Quantitative trait loci contributing resistance to aflatoxin accumulation in the maize inbred Mp313E. Crop Sci 45(1):171–174

    CAS  Google Scholar 

  • Brown RL, Cotty PJ, Cleveland TE, Widstrom NW (1993) Living maize embryo influences accumulation of aflatoxin in maize kernels. J Food Prot 56(11):967–971

    Article  CAS  PubMed  Google Scholar 

  • Brown R, Cleveland T, Payne G, Woloshuk C, Campbell K, White D (1995) Determination of resistance to aflatoxin production in maize kernels and detection of fungal colonization using an Aspergillus flavus transformant expressing Escherichia coli β-glucuronidase. Phytopathology 85(9):983–989

    Article  CAS  Google Scholar 

  • Brown RL, Chen Z-Y, Cleveland TE, Cotty PJ, Cary JW (2001) Variation in in vitro α-amylase and protease activity is related to the virulence of Aspergillus flavus isolates. J Food Prot 64(3):401–404

    Article  CAS  PubMed  Google Scholar 

  • Brown RL, Chen Z-Y, Warburton M, Luo M, Menkir A, Fakhoury A, Bhatnagar D (2010) Discovery and characterization of proteins associated with aflatoxin-resistance: evaluating their potential as breeding markers. Toxins 2(4):919–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RL, Menkir A, Chen Z-Y, Bhatnagar D, Yu J, Yao H, Cleveland TE (2013) Breeding aflatoxin-resistant maize lines using recent advances in technologies—a review. Food Addit Contam Part A 30(8):1382–1391

    Article  CAS  Google Scholar 

  • Brown RL, Williams WP, Windham GL, Menkir A, Chen Z-Y (2016) Evaluation of African-bred maize germplasm lines for resistance to aflatoxin accumulation. Agronomy 6(2):24

    Article  CAS  Google Scholar 

  • Buchanan RL, Lewis DF (1984) Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes. Appl Environ Microbiol 48(2):306–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgos-Hernández A, Price RL, Jorgensen-Kornman K, López-García R, Njapau H et al (2002) Decontamination of aflatoxin B1-contaminated corn by ammonium persulphate during fermentation. J Sci Food Agric 82(5):546–552

    Article  CAS  Google Scholar 

  • Burow GB, Nesbitt TC, Dunlap J, Keller NP (1997) Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol Plant-Microbe Interact 10(3):380–387. https://doi.org/10.1094/mpmi.1997.10.3.380

    Article  CAS  Google Scholar 

  • Busboom K, White D (2004) Inheritance of resistance to aflatoxin production and Aspergillus ear rot of corn from the cross of inbreds B73 and Oh516. Phytopathology 94(10):1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambell K, Hamblin A, White D (1997) Inheritance of resistance to aflatoxin production in the cross between corn inbreds B73 and L31. Phytopathology 87:1144–1147

    Article  Google Scholar 

  • Campbell K, White D (1995) Evaluation of corn genotypes for resistance to Aspergillus ear rot, kernel infection, and aflatoxin production. Plant Dis 79:1039–1045

    Article  CAS  Google Scholar 

  • Cardwell KF, Henry SH (2004) Risk of exposure to and mitigation of effect of aflatoxin on human health: a West African example. J Toxicol Toxin Rev 23(2–3):217–247

    Article  CAS  Google Scholar 

  • Cary JW, Deepak B, Linz J (2000a) Aflatoxins: biological significance and regulation of biosynthesis. In: Cary JW, Linz JE, Bhatnagar D (eds) Microbial foodborne diseases: mechanisms of pathogenesis and toxin synthesis. CRC Press, Boca Raton, pp 317–361

    Google Scholar 

  • Cary JW, Ehrlich K, Wright M, Chang P-K, Bhatnagar D (2000b) Generation of aflR disruption mutants of Aspergillus parasiticus. Appl Microbiol Biotechnol 53(6):680–684

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000c) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154(2):171–181

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, OBrian GR, Nielsen DM, Nierman W, Harris-Coward P et al (2007) Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl Microbiol Biotechnol 76(5):1107–1118. https://doi.org/10.1007/s00253-007-1081-y

  • Cary JW, Rajasekaran K, Brown RL, Luo M, Chen Z-Y, Bhatnagar D (2011) Developing resistance to aflatoxin in maize and cottonseed. Toxins 3(6):678–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cary JW, Harris-Coward PY, Ehrlich KC, Mack BM, Kale SP et al (2012) NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production. Eukaryot Cell 11(9):1104–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cary JW, Harris-Coward P, Scharfenstein L, Mack BM, Chang PK et al (2017) The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production. Toxins (Basel) 9(10). https://doi.org/10.3390/toxins9100315

  • Chang P-K, Ehrlich KC (2010) What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int J Food Microbiol 138(3):189–199

    Article  CAS  PubMed  Google Scholar 

  • Chang P-K, Scharfenstein LL, Ehrlich KC, Wei Q, Bhatnagar D, Ingber BF (2012) Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol 116(2):298–307. https://doi.org/10.1016/j.funbio.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  • Chauhan Y, Wright G, Rachaputi N (2008) Modelling climatic risks of aflatoxin contamination in maize. Aust J Exp Agric 48(3):358–366

    Article  CAS  Google Scholar 

  • Chauhan Y, Wright G, Rachaputi R, Holzworth D, Broome A, Krosch S, Robertson M (2010) Application of a model to assess aflatoxin risk in peanuts. J Agric Sci 148(3):341–351

    Article  CAS  Google Scholar 

  • Chauhan R, Singh J, Sachdev T, Basu T, Malhotra B (2016) Recent advances in mycotoxins detection. Biosens Bioelectron 81:532–545

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-Y, Brown R, Lax A, Guo B, Cleveland T, Russin J (1998) Resistance to Aspergillus flavus in corn kernels is associated with a 14-kDa protein. Phytopathology 88(4):276–281

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-Y, Brown R, Russin J, Lax A, Cleveland T (1999a) A corn trypsin inhibitor with antifungal activity inhibits Aspergillus flavus α-amylase. Phytopathology 89(10):902–907

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-Y, Brown RL, Lax AR, Cleveland TE, Russin JS (1999b) Inhibition of plant-pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coli. Appl Environ Microbiol 65(3):1320–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z-Y, Brown RL, Cleveland TE, Damann KE, Russin JS (2001) Comparison of constitutive and inducible maize kernel proteins of genotypes resistant or susceptible to aflatoxin production. J Food Prot 64(11):1785–1792

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-Y, Brown R, Damann K, Cleveland T (2002) Identification of unique or elevated levels of kernel proteins in aflatoxin-resistant maize genotypes through proteome analysis. Phytopathology 92(10):1084–1094

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-Y, Brown R, Damann K, Cleveland T (2004) Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathology 94(9):938–945

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-Y, Brown R, Rajasekaran K, Damann K, Cleveland T (2006) Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production. Phytopathology 96(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Brown RL, Damann KE, Cleveland TE (2007) Identification of maize kernel endosperm proteins associated with resistance to aflatoxin contamination by Aspergillus flavus. Phytopathology 97(9):1094–1103. https://doi.org/10.1094/phyto-97-9-1094

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Brown RL, Damann KE, Cleveland TE (2010) PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol Plant Pathol 11(1):69–81

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-Y, Brown RL, Menkir A, Cleveland TE (2012) Identification of resistance-associated proteins in closely-related maize lines varying in aflatoxin accumulation. Mol Breed 30(1):53–68. https://doi.org/10.1007/s11032-011-9597-3

    Article  CAS  Google Scholar 

  • Chen Z-Y, Rajasekaran K, Brown R, Sayler R, Bhatnagar D (2014) Discovery and confirmation of genes/proteins associated with maize aflatoxin resistance. World Mycotoxin J 8(2):211–224

    Article  CAS  Google Scholar 

  • Chen Z-Y, Warburton M, Hawkins L, Wei Q, Raruang Y, Brown R, Zhang L, Bhatnagar D (2016) Production of the 14 kDa trypsin inhibitor protein is important for maize resistance against Aspergillus flavus infection/aflatoxin accumulation. World Mycotoxin J 9(2):215–228

    Article  CAS  Google Scholar 

  • Chulze S (2010) Strategies to reduce mycotoxin levels in maize during storage: a review. Food Addit Contam 27(5):651–657

    Article  CAS  Google Scholar 

  • Clavel D (2000) Molecular strategy for groundnut pre-harvest aflatoxin elimination: recent advances and future prospects. https://agritrop.cirad.fr

  • Clevenger J, Marasigan K, Liakos V, Sobolev V, Vellidis G, Holbrook C, Ozias-Akins P (2016) RNA sequencing of contaminated seeds reveals the state of the seed permissive for pre-harvest aflatoxin contamination and points to a potential susceptibility factor. Toxins (Basel) 8(11). https://doi.org/10.3390/toxins8110317

  • Cole RJ, Sanders TH, Hill RA, Blankenship PD (1985) Mean geocarposphere temperatures that induce preharvest aflatoxin contamination of peanuts under drought stress. Mycopathologia 91(1):41–46. https://doi.org/10.1007/bf00437286

    Article  CAS  PubMed  Google Scholar 

  • Cole R, Sobolev V, Dorner J (1993) Potentially important sources of resistance to prevention of preharvest aflatoxin contamination in peanuts. Proc Am Peanut Res Educ Soc 25:78

    Google Scholar 

  • Cole RJ, Dorner JW, Holbrook CC (1995) Advances in mycotoxin elimination and resistance. In: Advances in peanut science. American Peanut Research and Education Society, Stillwater, OK, pp 456–474

    Google Scholar 

  • Cornea CP, Ciuca M, Voaides C, Gagiu V, Pop A (2011) Incidence of fungal contamination in a Romanian bakery: a molecular approach. Rom Biotech Lett 16(1):5863–5871

    CAS  Google Scholar 

  • Cotty PJ (1988) Aflatoxin and sclerotial production by Aspergillus flavus: influence of pH. Phytopathology 78(9):1250. https://doi.org/10.1094/phyto-78-1250

    Article  CAS  Google Scholar 

  • Cotty PJ (2006) Biocompetitive exclusion of toxigenic fungi. The mycotoxin factbook: food and feed topics, pp 179–197

    Google Scholar 

  • Cotty PJ, Bhatnagar D (1994) Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Appl Environ Microbiol 60(7):2248–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cotty PJ, Jaime-Garcia R (2007) Influences of climate on aflatoxin producing fungi and aflatoxin contamination. Int J Food Microbiol 119(1–2):109–115. https://doi.org/10.1016/j.ijfoodmicro.2007.07.060

    Article  CAS  PubMed  Google Scholar 

  • Coulibaly O, Hell K, Bandyopadhyay R, Hounkponou S, Leslie JF (2008) Mycotoxins: detection methods, management, public health and agricultural trade. CABI, UK

    Google Scholar 

  • Cuero R, Ouellet T, Yu J, Mogongwa N (2003) Metal ion enhancement of fungal growth, gene expression and aflatoxin synthesis in Aspergillus flavus: RT-PCR characterization. J Appl Microbiol 94(6):953–961. https://doi.org/10.1046/j.1365-2672.2003.01870.x

    Article  CAS  PubMed  Google Scholar 

  • Darrah L, Lillehoj E, Zuber M, Scott G, Thompson D, West D, Widstrom N, Fortnum B (1987) Inheritance of aflatoxin B1 levels in maize kernels under modified natural inoculation with Aspergillus flavus 1. Crop Sci 27(5):869–872

    CAS  Google Scholar 

  • Davidson J, Hill R, Cole R, Mixon A, Henning R (1982) Field performance of two peanut cultivars relative to resistance to invasion by A. flavus and subsequent aflatoxin contamination. Proc Am Peanut Res Educ Soc 1:74–78

    Google Scholar 

  • Davidson J Jr, Hill R, Cole R, Mixon A, Henning R (1983) Field performance of two peanut cultivars relative to aflatoxin contamination. Peanut Sci 10(1):43–47

    Article  Google Scholar 

  • Davis ND, Diener UL, Agnihotri VP (1967) Production of aflatoxins B1 and G1 in chemically defined medium. Mycopathologia et Mycologia Applicata 31(3–4):251–256. https://doi.org/10.1007/bf02053422

    Article  CAS  PubMed  Google Scholar 

  • De Lucca AJ (1998) Fungicidal and binding properties of three plant peptides. Mycopathologia 144(2):87–91

    Article  PubMed  Google Scholar 

  • Degola F, Berni E, Restivo FM (2011) Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus strains as biocontrol agents. Int J Food Microbiol 146(3):235–243. https://doi.org/10.1016/j.ijfoodmicro.2011.02.020

    Article  PubMed  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127(3):852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakal R, Chai C, Karan R, Windham GL, Williams WP, Subudhi PK (2017) Expression profiling coupled with in-silico mapping identifies candidate genes for reducing aflatoxin accumulation in maize. Front Plant Sci 8:503

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhakal R, Windham GL, Williams WP, Subudhi PK (2016) Quantitative trait loci (QTL) for reducing aflatoxin accumulation in corn. Mol Breeding 36(12)

    Google Scholar 

  • Dickens J (1977) Aflatoxin occurrence and control during growth, harvest, and storage of peanut. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox Publishers, Inc., Illinois, pp 99–l05

    Google Scholar 

  • Diener U, Davis N (1987) Biology of Aspergillus flavus and A. parasiticus. In: US universities-CIMMYT maize aflatoxin workshop, El Batan, Mexico (Mexico), 7–11 Apr 1987, CIMMYT

    Google Scholar 

  • Dolezal AL, Shu X, OBrian GR, Nielsen DM, Woloshuk CP, Boston RS, Payne GA (2014) Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels. Front Microbiol 5(384). https://doi.org/10.3389/fmicb.2014.00384

  • Dorner JW (2004) Biological control of aflatoxin contamination of crops. J Toxicol Toxin Rev 23(2–3):425–450

    Article  CAS  Google Scholar 

  • Dorner JW (2009) Development of biocontrol technology to manage aflatoxin contamination in peanuts. Peanut Sci 36(1):60–67. https://doi.org/10.3146/at07-002.1

    Article  Google Scholar 

  • Dorner JW, Horn BW (2007) Separate and combined applications of nontoxigenic Aspergillus flavus and A. parasiticus for biocontrol of aflatoxin in peanuts. Mycopathologia 163(4):215–223

    Google Scholar 

  • Dorner JW, Lamb M (2006) Development and commercial use of afla-guard®, an aflatoxin biocontrol agent. Mycotoxin Res 22(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Dorner JW, Cole RJ, Sanders TH, Blankenship PD (1989) Interrelationship of kernel water activity, soil temperature, maturity, and phytoalexin production in preharvest aflatoxin contamination of drought-stressed peanuts. Mycopathologia 105(2):117–128. https://doi.org/10.1007/bf00444034

    Article  CAS  PubMed  Google Scholar 

  • Dorner JW, Cole RJ, Blankenship PD (1992) Use of a biocompetitive agent to control preharvest aflatoxin in drought stressed peanuts. J Food Prot 55(11):888–892

    Article  CAS  PubMed  Google Scholar 

  • Dorner JW, Cole RJ, Blankenship PD (1998) Effect of inoculum rate of biological control agents on preharvest aflatoxin contamination of peanuts. Biol Control 12(3):171–176

    Article  Google Scholar 

  • Dorner JW, Cole RJ, Wicklow DT (1999) Aflatoxin reduction in corn through field application of competitive fungi. J Food Prot 62(6):650–656

    Article  CAS  PubMed  Google Scholar 

  • Dorner JW, Cole RJ, Connick WJ, Daigle DJ, McGuire MR, Shasha BS (2003) Evaluation of biological control formulations to reduce aflatoxin contamination in peanuts. Biol Control 26(3):318–324

    Article  Google Scholar 

  • Doster MA, Michailides T (1995) The relationship between date of hull splitting and decay of pistachio nuts by Aspergillus species. Plant Dis (USA)

    Google Scholar 

  • Doster MA, Cotty PJ, Michailides TJ (2014) Evaluation of the atoxigenic Aspergillus flavus strain AF36 in pistachio orchards. Plant Dis 98(7):948–956

    Article  PubMed  Google Scholar 

  • Dowd PF, White DG (2002) Corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae) and other insect associated resistance in the maize inbred Tex6. J Econ Entomol 95(3):628–634

    Article  CAS  PubMed  Google Scholar 

  • Doyle M, Applebaum R, Brackett R, Marth E (1982) Physical, chemical and biological degradation of mycotoxins in foods and agricultural commodities. J Food Prot 45(10):964–971

    Article  CAS  PubMed  Google Scholar 

  • Drying G (1987) Handling and storage handbook. MWPS-13, Midwest Plan Service, Ames, IA

    Google Scholar 

  • Duan C-G, Wang C-H, Guo H-S (2012) Application of RNA silencing to plant disease resistance. Silence 3(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Eaton DL, Groopman JD (2013) The toxicology of aflatoxins: human health, veterinary, and agricultural significance. Elsevier, Amsterdam

    Google Scholar 

  • Ehrlich KC (2014) Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Front Microbiol 5:50

    PubMed  PubMed Central  Google Scholar 

  • Ehrlich KC, Cotty PJ (2004) An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Appl Microbiol Biotechnol 65(4):473–478. https://doi.org/10.1007/s00253-004-1670-y

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich KC, Montalbano BG, Cotty PJ (2003) Sequence comparison of aflR from different Aspergillus species provides evidence for variability in regulation of aflatoxin production. Fungal Genet Biol 38(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich KC, Li P, Scharfenstein L, Chang P-K (2010) HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Appl Environ Microbiol 76(10):3374–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espeso EA, Arst HN (2000) On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol Cell Biol 20(10):3355–3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espeso EA, Tilburn J, Arst H, Penalva M (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12(10):3947–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Failla LJ, Lynn D, Niehaus W (1986) Correlation of Zn2+ content with aflatoxin content of corn. Appl Environ Microbiol 52(1):73–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhoury A, Woloshuk C (1999) Amy1, the α-amylase gene of Aspergillus flavus: involvement in aflatoxin biosynthesis in maize kernels. Phytopathology 89(10):908–914

    Article  CAS  PubMed  Google Scholar 

  • Fakhoury A, Woloshuk C (2001) Inhibition of growth of Aspergillus flavus and fungal α-amylases by a lectin-like protein from Lablab purpureus. Mol Plant-microbe Interact 14(8):955–961

    Article  CAS  PubMed  Google Scholar 

  • Fanelli C, Fabbri AA (1989) Relationship between lipids and aflatoxin biosynthesis. Mycopathologia 107(2–3):115–120. https://doi.org/10.1007/bf00707547

    Article  CAS  PubMed  Google Scholar 

  • Fanelli C, Fabbri AA, Finotti E, Passi S (1983) Stimulation of aflatoxin biosynthesis by lipophilic epoxides. Microbiology 129(6):1721–1723. https://doi.org/10.1099/00221287-129-6-1721

    Article  CAS  Google Scholar 

  • Fanelli C, Fabbri AA, Brasini S, De Luca C, Passi S (1995) Effect of different inhibitors of sterol biosynthesis on both fungal growth and aflatoxin production. Nat Toxins 3(2):109–113. https://doi.org/10.1002/nt.2620030209

    Article  CAS  PubMed  Google Scholar 

  • Farfan IDB, Gerald N, Murray SC, Isakeit T, Huang P-C, Warburton M, Williams P, Windham GL, Kolomiets M (2015) Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS One 10(2):e0117737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher MC, Henk DA (2012) Sex, drugs and recombination: the wild life of Aspergillus. Mol Ecol 21(6):1305–1306. https://doi.org/10.1111/j.1365-294x.2012.05506.x

    Article  PubMed  Google Scholar 

  • Fountain JC, Chen Z-Y, Scully BT, Kemerait RC, Lee RD, Guo B (2010) Pathogenesis-related gene expressions in different maize genotypes under drought stressed conditions. Afr J Plant Sci 4(11):433–440

    CAS  Google Scholar 

  • Fountain JC, Yang L, Khera P, Kemerait R, Lee R, Scully B, Varshney R, Guo B (2015) Aflatoxin production and oxidative stress in Aspergillus flavus. In: Meeting abstract

    Google Scholar 

  • Fountain JC, Koh J, Yang L, Pandey MK, Nayak SN, Bajaj P, Zhuang W-J, Chen Z-Y, Kemerait RC, Lee RD (2018) Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability. Sci Rep 8(1):3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo A, Solfrizzo M, Epifani F, Panzarini G, Perrone G (2016) Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium. Int J Food Microbiol 217:162–169

    Article  CAS  PubMed  Google Scholar 

  • Garber N, Cotty PJ (2006) Timing of herbicide applications may influence efficacy of aflatoxin biocontrol. In: Beltwide cotton conferences, San Antonio, TX, USA, p 11

    Google Scholar 

  • Gardner C, Darrah L, Zuber M, Wallin J (1987) Genetic control of aflatoxin production in maize. Plant Dis (USA)

    Google Scholar 

  • Garrido-Bazan V, Mahuku G, Bibbins-Martinez M, Arroyo-Bacerra A, Villalobos-López MÁ (2018) Dissection of mechanisms of resistance to Aspergillus flavus and aflatoxin using tropical maize germplasm. World Mycotoxin J 1–10

    Google Scholar 

  • Gembeh SV, Brown RL, Grimm C, Cleveland TE (2001) Identification of chemical components of corn kernel pericarp wax associated with resistance to Aspergillus flavus infection and aflatoxin production. J Agric Food Chem 49(10):4635–4641

    Article  CAS  PubMed  Google Scholar 

  • Georgianna DR, Payne GA (2009) Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet Biol 46(2):113–125

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MK, Mack BM, Wei Q, Bland JM, Bhatnagar D, Cary JW (2016) RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus. Microbiol Res 182:150–161. https://doi.org/10.1016/j.micres.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MK, Majumdar R, Rajasekaran K, Chen Z-Y, Wei Q, Sickler CM, Lebar MD, Cary JW, Frame BR, Wang K (2018) RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta 1–9

    Google Scholar 

  • Giorni P, Magan N, Battilani P (2009) Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize. Int J Food Microbiol 130(3):213–218

    Article  CAS  PubMed  Google Scholar 

  • Girdthai T, Jogloy S, Vorasoot N, Akkasaeng C, Wongkaew S, Holbrook CC, Patanothai A (2010) Heritability of, and genotypic correlations between, aflatoxin traits and physiological traits for drought tolerance under end of season drought in peanut (Arachis hypogaea L.). Field Crops Res 118(2):169–176

    Google Scholar 

  • Glueck JA, Clark L, Smith O (1977) Testa comparisons of four peanut cultivars 1. Crop Sci 17(5):777–782

    Article  Google Scholar 

  • Gorman D, Kang M, Cleveland T, Hutchinson R (1992) Combining ability for resistance to field aflatoxin accumulation in maize grain. Plant Breed 109(4):296–303

    Article  CAS  Google Scholar 

  • Grace D, Mahuku G, Hoffmann V, Atherstone C, Upadhyaya HD, Bandyopadhyay R (2015) International agricultural research to reduce food risks: case studies on aflatoxins. Food Secur 7(3):569–582

    Article  Google Scholar 

  • Graham J (1982) Aflatoxin in peanuts: occurrence and control. Queensland Agric J 108:109

    Google Scholar 

  • Gressel J, Polturak G (2018) Suppressing aflatoxin biosynthesis is not a breakthrough if not useful. Pest Manag Sci 74(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Gummert M, Balingbing C, Barry G, Estevez L (2009) Management options, technologies and strategies for minimised mycotoxin contamination of rice. World Mycotoxin J 2(2):151–159

    Article  CAS  Google Scholar 

  • Guo BZ, Russin JS, Cleveland TE, Brown RL, Widstrom NW (1995) Wax and cutin layers in maize kernels associated with resistance to aflatoxin production by Aspergillus flavus. J Food Protect 58(3):296–300

    Article  CAS  Google Scholar 

  • Guo B, Chen Z-Y, Brown R, Lax A, Cleveland T, Russin J, Mehta A, Selitrennikoff C, Widstrom N (1997) Germination induces accumulation of specific proteins and antifungal activities in corn kernels. Phytopathology 87(11):1174–1178

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Holbrook C, Yu J, Lee R, Lynch R (2005) Application of technology of gene expression in response to drought stress and elimination of preharvest aflatoxin contamination. Aflatoxin Food Saf 26:313–331

    Google Scholar 

  • Guo B, Xu G, Cao Y, Holbrook C, Lynch R (2006) Identification and characterization of phospholipase D and its association with drought susceptibilities in peanut (Arachis hypogaea). Planta 223(3):512–520

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Widstrom N, Lee R, Coy A, Lynch R (2007) Registration of maize germplasm GT601 (AM-1) and GT602 (AM-2). J Plant Reg 1:153–154

    Article  Google Scholar 

  • Guo B, Chen X, Dang P, Scully BT, Liang X, Holbrook CC, Yu J, Culbreath AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticusinfection. BMC Dev Biol 8(1):12. https://doi.org/10.1186/1471-213x-8-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo B, Fedorova ND, Chen X, Wan CH, Wang W, Nierman WC, Bhatnagar D, Yu J (2011) Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins (Basel) 3(7):737–753. https://doi.org/10.3390/toxins3070737

    Article  CAS  Google Scholar 

  • Guo B, Pandey MK, He G, Zhang X, Liao B, Culbreath A, Varshney RK, Nwosu V, Wilson RF, Stalker HT (2013) Recent advances in molecular genetic linkage maps of cultivated peanut. Peanut Sci 40(2):95–106

    Article  Google Scholar 

  • Hadavi E (2005) Several physical properties of aflatoxin-contaminated pistachio nuts: application of BGY fluorescence for separation of aflatoxin-contaminated nuts. Food Addit Contam 22(11):1144–1153. https://doi.org/10.1080/02652030500306976

    Article  CAS  PubMed  Google Scholar 

  • Halloin J, Leigh T (1983) Screening and evaluation methods: resistance of cotton to seedling pathogens and seed deterioration. Host plant resistance research methods for insects, diseases, nematodes and spider mites in cotton. South Coop Ser Bull 280:12–16

    Google Scholar 

  • Hamblin A, White D (2000) Inheritance of resistance to Aspergillus ear rot and aflatoxin production of corn from Tex6. Phytopathology 90(3):292–296

    Article  CAS  PubMed  Google Scholar 

  • Hammond TM, Keller NP (2005) RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases. Genetics 169(2):607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanano A, Almousally I, Shaban M, Rahman F, Hassan M, Murphy DJ (2017) Specific caleosin/peroxygenase and lipoxygenase activities are tissue-differentially expressed in date palm (Phoenix dactylifera L.) seedlings and are further induced following exposure to the toxin 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Front Plant Sci 7:2025

    Google Scholar 

  • Hawkins LK, Mylroie JE, Oliveira DA, Smith JS, Ozkan S, Windham GL, Williams WP, Warburton ML (2015) Characterization of the maize chitinase genes and their effect on Aspergillus flavus and aflatoxin accumulation resistance. PLoS One 10(6):e0126185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins LK, Warburton ML, Tang J et al (2018) Survey of candidate genes for maize resistance to infection by Aspergillus favus and/or afatoxin contamination. Toxins (Basel). https://doi.org/10.3390/toxins10020061

  • Heathcote JG, Hibbert J (1978) Aflatoxins: chemical and biological aspects. Elsevier Scientific Publishing Co, Amsterdam

    Google Scholar 

  • Hell K, Mutegi C (2011) Aflatoxin control and prevention strategies in key crops of Sub-Saharan Africa. Afr J Microbiol Res 5(5):459–466

    Google Scholar 

  • Hell K, Cardwell KF, Setamou M, Poehling HM (2000) The influence of storage practices on aflatoxin contamination in maize in four agroecological zones of Benin, West Africa. J Stored Prod Res 36(4):365–382. https://doi.org/10.1016/S0022-474X(99)00056-9

  • Hell K, Fandohan P, Bandyopadhyay R, Kiewnick S, Sikora R, Cotty PJ (2008) Pre-and post-harvest management of aflatoxin in maize: an African perspective. In: Leslie JF, Bandyopadhyay R, Viscont A (eds) Mycotoxins: detection methods, management, public health and agricultural trade. CAB International, Wallingford, pp 219–229

    Chapter  Google Scholar 

  • Hell K, Mutegi C, Fandohan P (2010) Aflatoxin control and prevention strategies in maize for Sub-Saharan Africa. Afr J Microbiol Res 425:534

    Google Scholar 

  • Henry WB, Williams WP, Windham GL, Hawkins LK (2009) Evaluation of maize inbred lines for resistance to Aspergillus and Fusarium ear rot and mycotoxin accumulation. Agron J 101:1219–1226. https://doi.org/10.2134/agronj2009.0004

    Article  CAS  Google Scholar 

  • Henry WB, Windham GL, Blanco MH (2012) Evaluation of maize germplasm for resistance to aflatoxin accumulation. Agronomy 2(1):28–39

    Article  CAS  Google Scholar 

  • Henry WB, Windham GL, Rowe DE, Blanco MH, Murray SC, Williams WP (2013) Diallel analysis of diverse maize germplasm lines for resistance to aflatoxin accumulation. Crop Sci 53:394–402. https://doi.org/10.2135/cropsci2012.04.0240

    Article  CAS  Google Scholar 

  • Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Gα protein-dependent signaling pathway. EMBO J 16(16):4916–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the US germplasm collection of peanut. Crop Sci 33(4):859–861

    Article  Google Scholar 

  • Holbrook CC, Matheron ME, Wilson DM, Anderson WF, Will ME, Norden AJ (1994) Development of a large-scale field system for screening peanut for resistance to preharvest aflatoxin contamination. Peanut Sci 21(1):20–22

    Article  Google Scholar 

  • Holbrook C, Ozias-Akins P, Timper P, Wilson D, Cantonwine E, Guo B, Sullivan D, Dong W (2008) Research from the coastal plain experiment station, Tifton, Georgia, to minimize aflatoxin contamination in peanut. Toxin Rev 27(3–4):391–410

    Article  CAS  Google Scholar 

  • Holbrook CC, Guo B, Wilson D, Timper P (2009) The US breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination. Peanut Sci 36(1):50–53

    Article  Google Scholar 

  • Holscher K (2000) Integrated pest management of stored grain insects: current status and future concerns. In: Proceeding of 12th integrated crop management conference, pp 41–47. https://lib.dr.iastate.edu/icm/2000/proceedings/6

  • Hsieh DPH (1989) Potential human health hazards of mycotoxins. In: Natori S, Hashimoto K, Ueno Y (eds) Mycotoxins and phycotoxins. Elsevier, Amsterdam, pp 69–80

    Google Scholar 

  • Huang Z, White DG, Payne GA (1997) Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis. Phytopathology 87(6):622–627

    Article  CAS  PubMed  Google Scholar 

  • IARC (2015) Mycotoxin control in low-and middle-income countries. International Agency for Research on Cancer Lyon, France

    Google Scholar 

  • ICRISAT (2009) Aflatoxin timeline. https://www.icrisat.org/aflatoxin-timeline

  • Idris YM, Mariod AA, Elnour IA, Mohamed AA (2010) Determination of aflatoxin levels in Sudanese edible oils. Food Chem Toxicol 48(8–9):2539–2541

    Article  CAS  PubMed  Google Scholar 

  • Igawa T, Takahashi-Ando N, Ochiai N, Ohsato S, Shimizu T, Kudo T, Yamaguchi I, Kimura M (2007) Reduced contamination by the Fusarium mycotoxin zearalenone in maize kernels through genetic modification with a detoxification gene. Appl Environ Microbiol 73(5):1622–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacks T, De Lucca A, Rajasekaran K, Stromberg K, van Pée K-H (2000) Antifungal and peroxidative activities of nonheme chloroperoxidase in relation to transgenic plant protection. J Agric Food Chem 48(10):4561–4564

    Article  CAS  PubMed  Google Scholar 

  • Jacks TJ, Cary JW, Rajasekaran K, Cleveland III TE, Van Pee K-H (2004) Transformation of plants with a chloroperoxidase gene to enhance disease resistance. Patent No. 6,703,540. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Jane C, Kiprop E, Mwamburi L (2012) Biocontrol of aflatoxins in corn using atoxigenic Aspergillus flavus. IJSR 2319–7064

    Google Scholar 

  • Jayashree T, Praveen Rao J, Subramanyam C (2000) Regulation of aflatoxin production by Ca2+/calmodulin-dependent protein phosphorylation and dephosphorylation. FEMS Microbiol Lett 183(2):215–219. https://doi.org/10.1111/j.1574-6968.2000.tb08960.x

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Norton R, Wicklow D, Dowd P (2000) Isoform patterns of chitinase and β-1, 3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milk stage infection. J Agric Food Chem 48(2):507–511

    Google Scholar 

  • Ji C, Fan Y, Zhao L (2016) Review on biological degradation of mycotoxins. Anim Nutr 2(3):127–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Ren X, Wang S, Liao B (2006) Durability of resistance to Aspergillus flavus infection and effect of intact testa without injury on aflatoxin production in peanut. Acta Agron Sin 32(6):851–855

    CAS  Google Scholar 

  • Jiang T, Zhou B, Luo M, Abbas HK, Kemerait R, Lee RD, Scully BT, Guo B (2011) Expression analysis of stress-related genes in kernels of different maize (Zea mays L.) inbred lines with different resistance to aflatoxin contamination. Toxins (Basel) 3(6):538–550. https://doi.org/10.3390/toxins3060538

  • Joint FAO, WHO Expert Committee on Food Additives (2006) Safety evaluation of certain food additives, vol 56. World Health Organization, Geneva

    Google Scholar 

  • Jwanny E, El-Sayed S, Salem A, Shehata A (2001) Characterization and antifungal evaluation of chitinase and laminarinases from sugarbeet leaves. Pak J Biol Sci 4:271–276

    Article  Google Scholar 

  • Kaaya A, Kyamuhangire W, Kyamanywa S (2006) Factors affecting aflatoxin contamination of harvested maize in the three agroecological zones of Uganda. J Appl Sci 6:2401–2407

    Article  CAS  Google Scholar 

  • Kabak B, Dobson AD, Var IIL (2006) Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr 46(8):593–619

    Article  CAS  PubMed  Google Scholar 

  • Kanyika BTN, Lungu D, Mweetwa AM, Kaimoyo E, Njung’e VM, Monyo ES, Siambi M, He G, Prakash CS, Zhao Y (2015) Identification of groundnut (Arachis hypogaea) SSR markers suitable for multiple resistance traits QTL mapping in African germplasm. Electron J Biotechnol 18(2):61–67

    Article  CAS  Google Scholar 

  • Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB (1997) pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology 87(6):643–648. https://doi.org/10.1094/phyto.1997.87.6.643

    Article  CAS  PubMed  Google Scholar 

  • Kelley RY, Gresham C, Harper J, Bridges SM, Warburton ML, Hawkins LK, Pechanova O, Peethambaran B, Pechan T, Luthe DS, Mylroie JE, Ankala A, Ozkan S, Henry WB, Williams WP (2010) Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize. BMC Bioinform 11(Suppl 6):S25. https://doi.org/10.1186/1471-2105-11-s6-s25

    Article  Google Scholar 

  • Kelley RY, Williams WP, Mylroie JE, Boykin DL, Harper JW, Windham GL, Ankala A, Shan X (2012) Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation. PLoS One 7(5):e36892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Campbell B, Molyneux R, Mahoney N, Chan K, Yu J, Wilkinson J, Cary J, Bhatnagar D, Cleveland T (2006) Gene targets for fungal and mycotoxin control. Mycotoxin Res 22(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Kisyombe CT, Beute M, Payne G (1985) Field evaluation of peanut genotypes for resistance to infection by Aspergillus parasiticus. Peanut Sci 12(1):12–17

    Article  Google Scholar 

  • Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K-H (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Nat Acad Sci 110(48):19324–19329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A (2016) An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 12(10):e1005901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolosova A, Stroka J (2011) Substances for reduction of the contamination of feed by mycotoxins: a review. World Mycotoxin J 4(3):225–256

    Article  CAS  Google Scholar 

  • Kulkarni L, Sharief Y, Sarma V (1967) Asiriya Mwitunde groundnut gives good results in Hyderabad. Indian Farming 17(9):9–12

    Google Scholar 

  • Kusuma V, Yugandhar G, Ajay B, Gowda M, Upadhyaya H (2007) Identification of sources of multiple disease resistance in groundnut (Arachis hypogaea L.) mini core. In: ISOR National Seminar, 2007. Directorate of Oilseeds Research Hyderabad, pp 29–31

    Google Scholar 

  • Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D (2014) Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genom 15(1):710

    Article  CAS  Google Scholar 

  • Lanubile A, Muppirala UK, Severin AJ, Marocco A, Munkvold GP (2015) Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genom 16(1):1089

    Article  CAS  Google Scholar 

  • Lanubile A, Maschietto V, Battilani P, Marocco A (2017) Infection with toxigenic and atoxigenic strains of Aspergillus flavus induces different transcriptional signatures in maize kernels. J Plant Interact 12(1):21–30

    Google Scholar 

  • Lanyasunya T, Wamae L, Musa H, Olowofeso O, Lokwaleput I (2005) The risk of mycotoxins contamination of dairy feed and milk on smallholder dairy farms in Kenya. Pakistan J Nutr 4(3):162–169

    Article  Google Scholar 

  • Lei Y, Wang S, Li D, Jiang H, Liao B (2004) Evaluation of resistance to aflatoxin production among peanut germplasm with resistance to bacterial wilt. Chin J Oil Crop Sci 26(1):69–71

    Google Scholar 

  • Lei Y, Liao B-S, Wang S-Y, Zhang Y-B, Li D, Jiang H-F (2006) A SCAR marker for resistance to Aspergillus flavus in peanut (Arachis hypogaea L.). Hereditas 28(9):1107–1111

    Google Scholar 

  • Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J, Backer L, Dahiye AM, Misore A (2005) Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ Health Perspect 113(12):1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Kang M, Moreno O, Pollak L (2002) Field resistance to Aspergillus flavus from exotic maize (Zea mays L.) germplasm. Plant Genet Resour Newsl 11–15

    Google Scholar 

  • Liang X, Zhou G, Pan R (2003) Wax and cuticle of peanut seed coat in relation to infection and aflatoxin production by Aspergillus flavus. J Trop Subtrop 11:11–14

    CAS  Google Scholar 

  • Liang XQ, Holbrook CC, Lynch RE, Guo BZ (2005) β-1,3-Glucanase activity in peanut seed (Arachis hypogaea) is induced by inoculation with Aspergillus flavus and copurifies with a conglutin-like protein. Phytopathology 95. https://doi.org/10.1094/phyto-95-0506

  • Liang XQ, Luo M, Guo BZ (2006) Resistance mechanisms to Aspergillus flavus infection and aflatoxin contamination in peanut (Arachis hypogaea). Plant Pathol J 5. https://doi.org/10.3923/ppj.2006.115.124

  • Liang X, Zhou G, Hong Y, Chen X, Liu H, Li S (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong Academy of Agricultural Sciences. Peanut Sci 36(1):29–34

    Google Scholar 

  • Liao B, Lei Y, Wang S, Li D, Jiang H, Ren X, Liao B, Lei Y, Wang S, Li D (2003) Aflatoxin resistance in bacterial wilt resistant groundnut germplasm. Int Arachis News Lett 23:23

    Google Scholar 

  • Liao B, Zhuang W, Tang R, Zhang X, Shan S, Jiang H, Huang J (2009) Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Science 36(1):21–28

    Article  Google Scholar 

  • Li SL (2006) Research progress of peanut resistance to Aspergillus flavus in Guangdong. Guangdong Agric Sci 10:17–20

    Google Scholar 

  • Lohmar JM, Harris-Coward PY, Cary JW, Dhingra S, Calvo AM (2016) rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus. Appl Microbiol Biotechnol 100(11):5029–5041

    Article  CAS  PubMed  Google Scholar 

  • Lozovaya VV, Waranyuwat A, Widholm JM (1998) β-l, 3-glucanase and resistance to Aspergillus flavus infection in maize. Crop Sci 38(5):1255–1260

    Article  CAS  Google Scholar 

  • Lubulwa A, Davis J (1994) Estimating the social costs of the impacts of fungi and aflatoxins in maize and peanuts. In: Highley E, Wright EJ, Banks HJ, Champ BR (eds) Stored product protection. Proceedings of the 6th international working conference on stored-product protection. CAB International, Wallingford, UK, pp 1017–1042

    Google Scholar 

  • Luchese RH, Harrigan WF (1993) Biosynthesis of aflatoxin-the role of nutritional factors. J Appl Bacteriol 74(1):5–14. https://doi.org/10.1111/j.1365-2672.1993.tb02989.x

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Dang P, Bausher MG, Holbrook CC, Lee RD, Lynch RE, Guo BZ (2005) Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathology 95. https://doi.org/10.1094/phyto-95-0381

  • Luo M, Liu J, Lee R, Guo B (2008) Characterization of gene expression profiles in developing kernels of maize (Zea mays) inbred Tex6. Plant Breed 127(6):569–578

    Article  CAS  Google Scholar 

  • Luo M, Liu J, Lee RD, Scully BT, Guo B (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integr Plant Biol 52(12):1059–1074

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Brown RL, Chen Z-Y, Menkir A, Yu J, Bhatnagar D (2011) Transcriptional profiles uncover Aspergillus flavus-induced resistance in maize kernels. Toxins 3(7):766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutfy O, Noor SM, Abbas K, Marhaban M (2008) Some control strategies in agricultural grain driers: a review. J Food Agric Environ 6(2):74

    Google Scholar 

  • Magbanua ZV, De Moraes CM, Brooks T, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant-Microbe Interact 20(6):697–706

    Article  CAS  PubMed  Google Scholar 

  • Magbanua ZV, Williams WP, Luthe DS (2013) The maize rachis affects Aspergillus flavus spread during ear development. Maydica 58(2):182–188

    Google Scholar 

  • Mahoney N, Molyneux RJ (2004) Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia). J Agric Food Chem 52(7):1882–1889

    Article  CAS  PubMed  Google Scholar 

  • Mahuku G, Warburton ML, Makumbi D, San Vincente F (2013) Managing aflatoxin contamination of maize: developing host resistance. International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Majumdar R, Rajasekaran K, Cary JW (2017a) RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front Plant Sci 8:200

    PubMed  PubMed Central  Google Scholar 

  • Majumdar R, Rajasekaran K, Sickler C, Lebar M, Musungu BM, Fakhoury AM, Payne GA, Geisler M, Carter-Wientjes C, Wei Q (2017b) The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination. Front Plant Sci 8:1758

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar R, Lebar M, Mack B, Minocha R, Minocha S, Carter-Wientjes C, Sickler C, Rajasekaran K, Cary JW (2018) The Aspergillus flavus spermidine synthase (spds) gene is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels. Front Plant Sci 9(317). https://doi.org/10.3389/fpls.2018.00317

  • Mallikarjunaiah NH, Jayapala N, Puttaswamy H, Ramachandrappa NS (2017) Characterization of non-aflatoxigenic strains of Aspergillus flavus as potential biocontrol agent for the management of aflatoxin contamination in groundnut. Microb Pathog 102:21–28

    Article  CAS  Google Scholar 

  • Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46(1):273–301. https://doi.org/10.1146/annurev.phyto.121307.094843

    Article  CAS  PubMed  Google Scholar 

  • Masanga JO, Matheka JM, Omer RA, Ommeh SC, Monda EO, Alakonya AE (2015) Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Plant Cell Rep 34(8):1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Maupin L, Clements M, White D (2003) Evaluation of the MI82 corn line as a source of resistance to aflatoxin in grain and use of BGYF as a selection tool. Plant Dis 87(9):1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Mauro A, Battilani P, Cotty PJ (2015) Atoxigenic Aspergillus flavus endemic to Italy for biocontrol of aflatoxins in maize. Biocontrol 60(1):125–134

    Article  CAS  Google Scholar 

  • Mauro A, Garcia-Cela E, Pietri A, Cotty PJ, Battilani P (2018) Biological control products for aflatoxin prevention in Italy: commercial field evaluation of atoxigenic Aspergillus flavus active ingredients. Toxins 10(1):30

    Article  CAS  PubMed Central  Google Scholar 

  • Mayfield K, Murray S, Rooney W, Isakeit T, Odvody G (2011) Confirmation of QTL reducing aflatoxin in maize testcrosses. Crop Sci 51(6):2489–2498

    Article  Google Scholar 

  • Mayfield K, Betrán FJ, Isakeit T, Odvody G, Murray SC, Rooney WL, Landivar JC (2012) Registration of maize germplasm lines Tx736, Tx739, and Tx740 for reducing preharvest aflatoxin accumulation. J Plant Registrations 6(1):88–94

    Article  Google Scholar 

  • McDonald T, Brown D, Keller NP, Hammond TM (2005) RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant-Microbe Interact 18(6):539–545

    Article  CAS  PubMed  Google Scholar 

  • McMillian W, Widstrom N, Wilson D (1993) Registration of GT-MAS: gk maize germplasm. Crop Sci 33(4):882

    Article  Google Scholar 

  • Mehan VK (1989) Screening groundnuts for resistance to seed invasion by Aspergillus flavus and to aflatoxin production. In: McDonald D, Mehan VK, Hall SD (eds) Aflatoxin contamination of groundnut. Proceedings of international workshop. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 323–334

    Google Scholar 

  • Mehan VK, McDonald D (1980) Screening for resistance to Aspergillus flavus invasion and aflatoxin production in groundnuts. Groundnut improvement program occasional paper no. 2. ICRISAT, Patancheru (limited distribution)

    Google Scholar 

  • Mehan V, McDonald D (1984) Research on the aflatoxin problem in groundnut at ICRISAT. Plant Soil 79(2):255–260

    Article  CAS  Google Scholar 

  • Mehan V, McDonald D, Lalitha B (1983) Effect of season, location and field-drying treatment on in vitro seed colonization of groundnut genotypes by Aspergillus flavus. Oleagineux (Paris) 38(10):553–559

    Google Scholar 

  • Mehan V, McDonald D, Ramakrishna N (1986a) Varietal resistance in peanut to aflatoxin production. Peanut Sci 13(1):7–10

    Article  Google Scholar 

  • Mehan V, McDonald D, Ramakrishna N, Williams J (1986b) Effects of genotype and date of harvest on infection of peanut seed by Aspergillus flavus and subsequent contamination with aflatoxin. Peanut Sci 13(2):46–50

    Article  CAS  Google Scholar 

  • Mehan V, McDonald D, Rajagopalan K (1987) Resistance of peanut genotypes to seed infection by Aspergillus flavus in field trials in India. Peanut Sci 14(1):17–21

    Article  Google Scholar 

  • Mehan V, McDonald D, Haravu L, Jayanthi S (1991) The groundnut aflatoxin problem review and literature database. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Mehanathan M, Bedre R, Mangu V, Rajasekaran K, Bhatnagar D, Baisakh N (2018) Identification of candidate resistance genes of cotton against Aspergillus flavus infection using a comparative transcriptomics approach. Physiol Mol Biol Plants 1–7

    Google Scholar 

  • Menkir A, Brown RL, Bandyopadhyay R, Cleveland TE (2008) Registration of six tropical maize germplasm lines with resistance to aflatoxin contamination. J Plant Regist 2(3):246–250

    Article  Google Scholar 

  • Meyers DM, Obrian G, Du W, Bhatnagar D, Payne G (1998) Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 64(10):3713–3717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Micali CO, Neumann U, Grunewald D, Panstruga R, O’connell R (2011) Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13(2):210–226

    Google Scholar 

  • Mideros SX, Windham GL, Williams WP, Nelson RJ (2012) Tissue-specific components of resistance to Aspergillus ear rot of maize. Phytopathology 102(8):787–793

    Article  PubMed  Google Scholar 

  • Mideros SX, Warburton ML, Jamann TM, Windham GL, Williams WP, Nelson RJ (2014) Quantitative trait loci influencing mycotoxin contamination of maize: analysis by linkage mapping, characterization of near-isogenic lines, and meta-analysis. Crop Sci 54(1):127–142

    Article  CAS  Google Scholar 

  • Milla S, Isleib T, Stalker H (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48(1):1–11

    Google Scholar 

  • Mitchell NJ, Bowers E, Hurburgh C, Wu F (2016) Potential economic losses to the USA corn industry from aflatoxin contamination. Food Addit Contam: Part A 33(3):540–550

    Article  CAS  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG et al (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3(2):16207

    Article  CAS  PubMed  Google Scholar 

  • Mixon A (1980) Potential for aflatoxin contamination in peanuts (Arachis hypogaea L.) before and soon after harvest—a review 1. J Environ Qual 9(3):344–349

    Google Scholar 

  • Mixon A (1986) Reducing aspergillus species infection of peanut seed using resistant genotypes 1. J Environ Qual 15(2):101–103

    Article  Google Scholar 

  • Mixon AC, Rogers KM (1973) Peanut accessions resistant to seed infection by Aspergillus flavus 1. Agron J 65(4):560–562

    Article  Google Scholar 

  • Mixon A, Bell D, Wilson D (1984) Effect of chemical and biological agents on the incidence of Aspergillus flavus and aflatoxin contamination of peanut seed [Georgia]. Phytopathology 74(12):1440–1444

    Article  CAS  Google Scholar 

  • Mohammadi M, Anoop V, Gleddie S, Harris LJ (2011) Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Proteomics 11(18):3675–3684

    Article  CAS  PubMed  Google Scholar 

  • Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N (2015) Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Cri Rev Microbiol 41(3):295–308

    Article  CAS  Google Scholar 

  • Moore KG, Price MS, Boston RS, Weissinger AK, Payne GA (2004) A chitinase from Tex6 maize kernels inhibits growth of Aspergillus flavus. Phytopathology 94(1):82–87

    Article  CAS  PubMed  Google Scholar 

  • Murdock LL, Margam V, Baoua I, Balfe S, Shade RE (2012) Death by desiccation: effects of hermetic storage on cowpea bruchids. J Stored Prod Res 49:166–170. https://doi.org/10.1016/j.jspr.2012.01.002

    Article  Google Scholar 

  • Murphy PA, Hendrich S, Landgren C, Bryant CM (2006) Food mycotoxins: an update. J Food Sci 71(5):51–65

    Article  CAS  Google Scholar 

  • Mutegi C, Wagacha J, Christie M, Kimani J, Karanja L (2013) Effect of storage conditions on quality and aflatoxin contamination of peanuts (Arachis hypogaea L.). Int J Agric Sci 3(10):746–758

    Google Scholar 

  • Mylroie J, Warburton M, Wilkinson J (2013) Development of a gene-based marker correlated to reduced aflatoxin accumulation in maize. Euphytica 194(3):431–441

    Article  CAS  Google Scholar 

  • Naidoo G, Forbes A, Paul C, White D, Rocheford T (2002) Resistance to Aspergillus ear rot and aflatoxin accumulation in maize F1 hybrids. Crop Sci 42(2):360–364

    Article  Google Scholar 

  • Naito Y, Ui-Tei K (2012) siRNA design software for a target gene-specific RNA interference. Front Genet 3:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2009) siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinfo 10(1):392

    Google Scholar 

  • Nakai VK, de Oliveira Rocha L, Gonçalez E, Fonseca H, Ortega EMM, Corrêa B (2008) Distribution of fungi and aflatoxins in a stored peanut variety. Food Chem 106(1):285–290

    Article  CAS  Google Scholar 

  • Nayak SN, Agarwal G, Pandey MK, Sudini HK, Jayale AS, Purohit S, Desai A, Wan L, Guo B, Liao B, Varshney RK (2017) Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in vitro seed colonization. Sci Rep 7(1):9659. https://doi.org/10.1038/s41598-017-09260-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesci A, Passone MA, Barra P, Girardi N, Garcia D et al (2016) Prevention of aflatoxin contamination in stored grains using chemical strategies. Curr Opin Food Sci 11:56–60

    Article  Google Scholar 

  • Nielsen K, Payne GA, Boston RS (2001) Maize ribosome-inactivating protein inhibits normal development of Aspergillus nidulans and Aspergillus flavus. Mol Plant-Microbe Interact 14(2):164–172

    Article  CAS  PubMed  Google Scholar 

  • Niu C, Akasaka-Kennedy Y, Faustinelli P, Joshi M, Rajasekaran K, Yang H, Chu Y, Cary J, Ozias-Akins P (2009) Antifungal activity in transgenic peanut (Arachis hypogaea L.) conferred by a nonheme chloroperoxidase gene. Peanut Sci 36(2):126–132

    Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22(9):3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obrian GR, Georgianna DR, Wilkinson JR, Yu J, Abbas HK, Bhatnagar D, Cleveland TE, Nierman W, Payne GA (2007) The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 99(2):232–239. https://doi.org/10.3852/mycologia.99.2.232

    Article  CAS  Google Scholar 

  • Odvody G, Spencer N, Remmers J (1997) A description of silk cut, a stress-related loss of kernel integrity in preharvest maize. Plant Dis 81(5):439–444

    Article  CAS  PubMed  Google Scholar 

  • Ogundero VW (1987) Temperature and aflatoxin production by Aspergillus flavus and A. parasiticus strains from Nigerian groundnuts. J Basic Microbiol 27(9):511–514

    Google Scholar 

  • Ojiambo P, Battilani P, Cary J, Bluhm B, Carbone I (2018) Cultural and genetic approaches to manage aflatoxin contamination: recent insights provide opportunities for improved control. Phytopathology 108(9). https://doi.org/10.1094/phyto-04-18-0134-rvw

  • Olarte RA, Horn BW, Dorner JW, Monacell JT, Singh R, Stone EA, Carbone I (2012) Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis. Mol Ecol 21(6):1453–1476. https://doi.org/10.1111/j.1365-294x.2011.05398.x

    Article  PubMed  Google Scholar 

  • Otsuki T, Wilson JS, Sewadeh M (2001) Saving two in a billion: quantifying the trade effect of European food safety standards on African exports. Food Policy 26(5):495–514

    Article  Google Scholar 

  • Ozias-Akins P, Gill R, Yang H, Lynch R (1999) Genetic engineering of peanut: progress with Bt, peroxidase, peptidyl MIM D4E1, and lipoxygenase. In: Proceedings of the USDA-ARS 1999 aflatoxin elimination workshop, pp 69–70

    Google Scholar 

  • Ozias-Akins P, Niu C, Joshi M, Deng Y-Y, Holbrook C, Lynch R (2002) Genetic engineering of peanut for reduction of aflatoxin contamination. In: Aflatoxin elimination workshop proceedings, p 71

    Google Scholar 

  • Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6(4):320–326

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Nam TY, Han KH, Kim SC, Yu JH (2014) VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9(2):e89883. https://doi.org/10.1371/journal.pone.0089883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons M, Munkvold G (2010) Relationships of immature and adult thrips with silk-cut, fusarium ear rot and fumonisin B1 contamination of maize in California and Hawaii. Plant Pathol 59(6):1099–1106

    Article  Google Scholar 

  • Paul C, Naidoo G, Forbes A, Mikkilineni V, White D, Rocheford T (2003) Quantitative trait loci for low aflatoxin production in two related maize populations. Theor Appl Genet 107(2):263–270

    Article  CAS  PubMed  Google Scholar 

  • Payne GA, Brown MP (1998) Genetics and physiology of aflatoxin biosynthesis. Annu Rev Phytopathol 36(1):329–362. https://doi.org/10.1146/annurev.phyto.36.1.329

  • Payne GA, Hagler W (1983) Effect of specific amino acids on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in defined media. Appl Environ Microbiol 46(4):805–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payne G, Cassel D, Adkins C (1986) Reduction of aflatoxin contamination in corn by irrigation and tillage. Phytopathology 76(7):679–684

    Article  CAS  Google Scholar 

  • Payne G, Nystrom G, Bhatnagar D, Cleveland T, Woloshuk C (1993) Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl Environ Microbiol 59(1):156–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payton P, Kottapalli KR, Rowland D, Faircloth W, Guo B, Burow M, Puppala N, Gallo M (2009) Gene expression profiling in peanut using high density oligonucleotide microarrays. BMC Genom 10(1):265

    Article  CAS  Google Scholar 

  • Pechanova O, Pechan T (2015) Maize-pathogen interactions: an ongoing combat from a proteomics perspective. Int J Mol Sci 16(12):28429–28448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pechanova O, Pechan T, Williams WP, Luthe DS (2011) Proteomic analysis of the maize rachis: potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation. Proteomics 11(1):114–127

    Article  CAS  PubMed  Google Scholar 

  • Peethambaran B, Hawkins L, Windham GL, Williams WP, Luthe DS (2010) Anti-fungal activity of maize silk proteins and role of chitinases in Aspergillus flavus resistance. Toxin Rev 29(1):27–39. https://doi.org/10.3109/15569540903402874

    Article  CAS  Google Scholar 

  • Pettit R, Azaizeh H, Taber R, Szerszen J, Smith O (1989) Screening groundnut cultivars for resistance to Aspergillus flavus, Aspergillus parasiticus, and aflatoxin contamination. In: International workshop on aflatoxin contamination of groundnut, Patancheru, AP (India), 6–9 Oct 1987, ICRISAT, Patancheru

    Google Scholar 

  • Pitt J, Hocking AD (2006) Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia 162(3):233–243

    Article  CAS  PubMed  Google Scholar 

  • Power IL, Dang PM, Sobolev VS, Orner VA, Powell JL, Lamb MC, Arias RS (2017) Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut. Plant Sci 257:106–125

    Article  CAS  PubMed  Google Scholar 

  • Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK (2013) Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J Plant Biochem Biotechnol 22(2):222–233

    Article  CAS  Google Scholar 

  • Premlata S, Sita B, Ahmad SK (1990) Aflatoxin elaboration and nutritional deterioration in some pulse cultivars during infestation with A. flavus. J Food Sci Technol (Mysore) 27(1):60–62

    Google Scholar 

  • Priyadarshini E, Tulpule P (1978) Relationship between fungal growth and aflatoxin production in varieties of maize and groundnut. J Agric Food Chem 26(1):249–252

    Article  CAS  PubMed  Google Scholar 

  • Probst C, Cotty PJ (2012) Relationships between in vivo and in vitro aflatoxin production: reliable prediction of fungal ability to contaminate maize with aflatoxins. Fungal Biol 116(4):503–510

    Article  CAS  PubMed  Google Scholar 

  • Probst C, Bandyopadhyay R, Price L, Cotty P (2011) Identification of atoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Dis 95(2):212–218

    Article  CAS  PubMed  Google Scholar 

  • Rachaputi N, Krosch S, Wright G (2002) Management practices to minimise pre-harvest aflatoxin contamination in Australian peanuts. Aust J Exp Agric 42(5):595–605

    Article  Google Scholar 

  • Rajasekaran K, Cary J, Jacks T, Stromberg K, Cleveland T (2000) Inhibition of fungal growth in planta and in vitro by transgenic tobacco expressing a bacterial nonheme chloroperoxidase gene. Plant Cell Rep 19(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3(6):545–554

    Google Scholar 

  • Rajasekaran K, Cary JW, Chen Z-Y, Brown RL, Cleveland TE (2008a) Antifungal traits of a 14 kDa maize kernel trypsin inhibitor protein in transgenic cotton. J Crop Improv 22(1):1–16

    Article  CAS  Google Scholar 

  • Rajasekaran K, Cary JW, Cotty PJ, Cleveland TE (2008b) Development of a GFP-expressing Aspergillus flavus strain to study fungal invasion, colonization, and resistance in cottonseed. Mycopathologia 165(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran K, Sickler C, Brown R, Cary J, Bhatnagar D (2013) Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain. World Mycotoxin J 6(2):151–158

    Article  CAS  Google Scholar 

  • Rajasekaran K, Sayler RJ, Sickler CM, Majumdar R, Jaynes JM, Cary JW (2018) Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Sci 270:150–156

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM (2013) The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 8(9):e74122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao KS, Tulpule P (1967) Varietal differences of groundnut in the production of aflatoxin. Nature 214(5089):738

    CAS  PubMed  Google Scholar 

  • Rao M, Upadhyaya H, Mehan V, Nigam S, McDonald D, Reddy N (1995) Registration of peanut germplasm ICGV 88145 and ICGV 89104 resistant to seed infection by Aspergillus flavus. Crop Sci 35(6)

    Google Scholar 

  • Razzaghi-Abyaneh M, Chang P-K, Shams-Ghahfarokhi M, Rai M (2014) Global health issues of aflatoxins in food and agriculture: challenges and opportunities. Front Microbiol 5:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Razzazi-Fazeli E, Rizwan M, Mayrhofer C, Nöbauer K (2011) The use of proteomics as a novel tool in aflatoxin research. In: Aflatoxins-biochemistry and molecular biology. InTech. https://doi.org/10.5772/24911

  • Reddy TV, Viswanathan L, Venkitasubramanian TA (1979) Factors affecting aflatoxin production by Aspergillus parasiticus in a chemically defined medium. J Gen Microbiol 114(2):409–413. https://doi.org/10.1099/00221287-114-2-409

    Article  CAS  PubMed  Google Scholar 

  • Reib J (1982) Development of Aspergillus parasiticus and formation of aflatoxin B1 under the influence of conidiogenesis affecting compounds. Arch Microbiol 133(3):236–238

    Article  Google Scholar 

  • Reverberi M, Zjalic S, Punelli F, Ricelli A, Fabbri AA, Fanelli C (2007) Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds. Food Addit Contam 24(10):1070–1075. https://doi.org/10.1080/02652030701553244

    Article  CAS  PubMed  Google Scholar 

  • Robens J, Cardwell KF, Shephard GS, Scussel VM, Plasencia J, van Egmond HP, Jonker MA, Horn BW, McDonald T, Hammond T (2005) Aflatoxin and food safety. Taylor & Francis Group, LLC, Routledge, p 616

    Google Scholar 

  • Rowe CEM (2009) DNA Markers for resistance to post-harvest aflatoxin accumulation in Arachis hypogaea L. MS thesis, NC State University. http://www.lib.ncsu.edu/resolver/1840.16/1533

  • Roy A, Chourasia H (1989) Effect of temperature on aflatoxin production in Mucuna pruriens seeds. Appl Environ Microbiol 55(2):531–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russin J, Guo B, Tubajika K, Brown R, Cleveland T, Widstrom N (1997) Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Phytopathology 87(5):529–533

    Article  CAS  PubMed  Google Scholar 

  • Samarajeewa U, Sen A, Cohen M, Wei C (1990) Detoxification of aflatoxins in foods and feeds by physical and chemical methods. J Food Prot 53(6):489–501

    Article  CAS  PubMed  Google Scholar 

  • Satterlee T, Cary JW, Calvo AM (2016) RmtA, a putative arginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus. PLoS One 11(5):e0155575. https://doi.org/10.1371/journal.pone.0155575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Heydt M, Abdel-Hadi A, Magan N, Geisen R (2009) Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. Int J Food Microbiol 135(3):231–237

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Heydt M, Rüfer CE, Abdel-Hadi A, Magan N, Geisen R (2010) The production of aflatoxin B1 or G1 by Aspergillus parasiticus at various combinations of temperature and water activity is related to the ratio of aflS to aflR expression. Mycotoxin Res 26(4):241–246. https://doi.org/10.1007/s12550-010-0062-7

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Houdele M, Kogel KH, Fischer R, Schillberg S et al (2015) Thanatin confers partial resistance against aflatoxigenic fungi in maize (Zea mays). Transgenic Res 24(5):885–895

    Article  CAS  PubMed  Google Scholar 

  • Scott GE, Zummo N (1988) Sources of resistance in maize to kernel infection by Aspergillus flavus in the field. Crop Sci 28(3):504–507

    Article  Google Scholar 

  • Scott GE, Zummo N (1990a) Preharvest kernel infection by Aspergillus flavus for resistant and susceptible maize hybrids. Crop Sci 30(2):381–383

    Article  Google Scholar 

  • Scott GE, Zummo N (1990b) Registration of Mp313E parental line of maize. Crop Sci 30(6)

    Google Scholar 

  • Scott GE, Zummo N (1992) Registration of Mp420 germplasm line of maize. Crop Sci 32(5)

    Google Scholar 

  • Scott GE, Zummo N (1994) Kernel infection and aflatoxin production in maize by Aspergillus flavus. Plant Dis 78(2):123

    Article  Google Scholar 

  • Shaaban MI, Bok JW, Lauer C, Keller NP (2010) Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot Cell 9(12):1816–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan X, Williams WP (2014) Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination. Front Microbiol 5:364. https://doi.org/10.3389/fmicb.2014.00364

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma KK, Pothana A, Prasad K, Shah D, Kaur J, Bhatnagar D, Chen ZY, Raruang Y, Cary JW, Rajasekaran K (2017) Peanuts that keep aflatoxin at bay: a threshold that matters. Plant Biotechnol J. https://doi.org/10.1111/pbi.12846

  • Shcherbakova L, Statsyuk N, Mikityuk O, Nazarova T, Dzhavakhiya V (2015) Aflatoxin B1 degradation by metabolites of Phoma glomerata PG41 isolated from natural substrate colonized by aflatoxigenic Aspergillus flavus. Jundishapur J. Microbiol 8(1):e24324. https://doi.org/10.5812/jjm.24324

    Article  PubMed  PubMed Central  Google Scholar 

  • Shieh M-T, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 63(9):3548–3552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Mehan V, Nigam S (1997) Sources of resistance to groundnut fungal and bacterial diseases: an update and appraisal. Technical report. International Crops Research Institute for the Semi-Arid Tropics, India

    Google Scholar 

  • Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cryIA (c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6(2):169–176

    Article  CAS  PubMed  Google Scholar 

  • Sirot V, Fremy J-M, Leblanc J-C (2013) Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem Toxicol 52:1–11

    Article  CAS  PubMed  Google Scholar 

  • Smith M-C, Madec S, Coton E, Hymery N (2016) Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8(4):94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squire RA (1981) Ranking animal carcinogens: a proposed regulatory approach. Science 214(4523):877–880

    Article  CAS  PubMed  Google Scholar 

  • Stalker H, Mozingo L (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28(2):117–123

    Article  CAS  Google Scholar 

  • Sudhakar P, Latha P, Babitha M, Reddy P, Naidu P (2007) Relationship of drought tolerance traits with aflatoxin contamination in groundnut. Indian J Plant Physiol 12(3):261

    CAS  Google Scholar 

  • Sudini H, Rao GR, Gowda CLL, Chandrika R, Margam V, Rathore A, Murdock LL (2015) Purdue Improved Crop Storage (PICS) bags for safe storage of groundnuts. J Stored Prod Res 64:133e138

    Google Scholar 

  • Sundaresha S, Kumar AM, Rohini S, Math S, Keshamma E, Chandrashekar S, Udayakumar M (2010) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. Eur J Plant Pathol 126(4):497–508

    Article  CAS  Google Scholar 

  • Tang JD, Perkins A, Williams WP, Warburton ML (2015) Using genomewide associations to identify metabolic pathways involved in maize aflatoxin accumulation resistance. BMC Genom 16(1):673

    Article  CAS  Google Scholar 

  • Thakare D, Zhang J, Wing RA, Cotty PJ, Schmidt MA (2017) Aflatoxin-free transgenic maize using host-induced gene silencing. Sci Adv 3(3):e1602382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur R, Rao V, Reddy S, Ferguson M (2000) Evaluation of wild Arachis germplasm accessions for in vitro seed colonization and anatoxin production by Aspergillus flavus. Int Arachis Newsl 20:44–46

    Google Scholar 

  • Tinoco M (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomovska J, Stefanovska V, Hristova VK, Georgievski N (2012) Examination of aflatoxins B1 and G1 in feed. Maced J Anim Sci 2(4):397–404

    Google Scholar 

  • Torres J, Guarro J, Suarez G, Sune N, Calvo M, Ramirez C (1980) Morphological changes in strains of Aspergillus flavus link ex fries and Aspergillus parasiticus speare related with aflatoxin production. Mycopathologia 72(3):171–174

    Article  CAS  PubMed  Google Scholar 

  • Torres A, Barros G, Palacios S, Chulze S, Battilani P (2014) Review on pre-and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res Int 62:11–19

    Article  CAS  Google Scholar 

  • Trail F, Mahanti N, Linz J (1995) Molecular biology of aflatoxin biosynthesis. Microbiology 141(4):755–765. https://doi.org/10.1099/13500872-141-4-755

    Article  CAS  PubMed  Google Scholar 

  • Tran-Dinh N, Pitt J, Markwell P (2018) Use of microsatellite markers to assess the competitive ability of nontoxigenic Aspergillus flavus strains in studies on biocontrol of aflatoxins in maize in Thailand. Biocontrol Sci Technol 28(3):215–225

    Article  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15(3):109–118

    Article  CAS  PubMed  Google Scholar 

  • Udoh J, Cardwell K, Ikotun T (2000) Storage structures and aflatoxin content of maize in five agroecological zones of Nigeria. J Stored Prod Res 36(2):187–201

    Article  Google Scholar 

  • Upadhyaya H, Nigam S, Mehan V, Lenne J (1997) Aflatoxin contamination of groundnut: prospects for a genetic solution through conventional breeding. In: Proceedings of the first Asia working group meeting, 27–29 May 1996, Ministry of Agriculture and Rural Development Hanoi, Vietnam, pp 81–88

    Google Scholar 

  • Upadhyaya H, Ferguson M, Bramel P (2001) Status of the Arachis germplasm collection at ICRISAT. Peanut Sci 28(2):89–96

    Article  Google Scholar 

  • Upadhyaya H, Nigam S, Thakur R (2002) Genetic enhancement for resistance to aflatoxin contamination in groundnut, pp 29–36. ICRISAT Open Access Repository

    Google Scholar 

  • Upadhyaya HD, Sharma S, Dwivedi SL (2013) Genetic resources, diversity and association mapping in peanut. Genetics, genomics and breeding peanuts. CRC Press, Boca Raton, pp 13–36

    Google Scholar 

  • Utomo S, Anderson W, Wynne J, Beute M, Hagler W Jr, Payne G (1990) Estimates of heritability and correlation among three mechanisms of resistance to Aspergillus parasiticus in peanut. Proc Am Peanut Res Educ Soc 22:26

    Google Scholar 

  • Van Egmond HP, Schothorst RC, Jonker MA (2007) Regulations relating to mycotoxins in food. Anal Bioanal Chem 389(1):147–157. https://doi.org/10.1007/s00216-007-1317-9

    Article  CAS  PubMed  Google Scholar 

  • Vardon P, McLaughlin C, Nardinelli C (2003) Potential economic costs of mycotoxins in the United States. Mycotoxins: risks in plant, animal, and human systems. Task force report. Council for Agricultural Science and Technology (CAST)

    Google Scholar 

  • Varga J, Frisvad J, Samson R (2009) A reappraisal of fungi producing aflatoxins. World Mycotoxin J 2(3):263–277

    Article  CAS  Google Scholar 

  • Verheecke C, Liboz T, Mathieu F (2016) Microbial degradation of aflatoxin B1: current status and future advances. Int J Food Microbiol 237:1–9

    Article  CAS  PubMed  Google Scholar 

  • Voegele RT, Mendgen K (2003) Rust haustoria: nutrient uptake and beyond. New Phytol 159(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Wacoo AP, Wendiro D, Vuzi PC, Hawumba JF (2014) Methods for detection of aflatoxins in agricultural food crops. J Appl Chem 2014:15. https://doi.org/10.1155/2014/706291

    Article  CAS  Google Scholar 

  • Waliyar F (2006) Effect of soil application of lime, crop residue and biocontrol agents on pre-harvest Aspergillus flavus infection and aflatoxin contamination in groundnut. In: International conference on groundnut aflatoxin management and genomics, 5–9 Nov 2006, Guangdong, China

    Google Scholar 

  • Waliyar F, Adomou M (2002) Summary proceedings of the seventh ICRISAT regional groundnut meeting for Western and Central Africa, 6–8 Dec 2000, International Crops Research Institute for the Semi-Arid Tropics, Cotonu, Benin, p 90

    Google Scholar 

  • Waliyar F, Bockelee-Morvan A (1989) Resistance of groundnut varieties to Aspergillus flavus in Senegal. In: Proceedings of international workshop on aflatoxin contamination of groundnut, 6–9 Oct 1987, ICRISAT Center, India, p 305

    Google Scholar 

  • Waliyar F, Hassan H, Bonkoungou S (1994) Sources of resistance to Aspergillus flavus and aflatoxin contamination in groundnut genotypes in West Africa. Plant Dis 78(7):704–708

    Article  Google Scholar 

  • Waliyar F, Kumar KVK, Diallo M, Traore A, Mangala U, Upadhyaya H, Sudini H (2016) Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol 145(4):901–913

    Article  CAS  Google Scholar 

  • Walker R, White D (2001) Inheritance of resistance to Aspergillus ear rot and aflatoxin production of corn from CI2. Plant Dis 85(3):322–327

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li M, Bucan M (2007) Pathway-based approaches for analysis of genomewide association studies. Am J Human Genet 81(6):1278–1283

    Article  CAS  Google Scholar 

  • Wang T, Zhang E, Chen X, Li L, Liang X (2010) Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Plant Biol 10:267. https://doi.org/10.1186/1471-2229-10-267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ogata M, Hirai H, Kawagishi H (2011) Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 314(2):164–169. https://doi.org/10.1111/j.1574-6968.2010.02158.x

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yan S, Liu C, Chen F, Wang T (2012) Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus. J Proteome Res 11(5):2739–2753

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Chen X-P, Li H-F, Liu H-Y, Hong Y-B, Yang Q-L, Chi X-Y, Yang Z, Yu S-L, Li L (2013) Transcriptome identification of the resistance-associated genes (RAGs) to Aspergillus flavus infection in pre-harvested peanut (Arachis hypogaea). Funct Plant Biol 40(3):292–303

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Lawrence KC, Ni X, Yoon S-C, Heitschmidt GW, Feldner P (2015) Near-infrared hyperspectral imaging for detecting Aflatoxin B1 of maize kernels. Food Control 51:347–355. https://doi.org/10.1016/j.foodcont.2014.11.047

    Article  CAS  Google Scholar 

  • Wang H, Lei Y, Yan L, Wan L, Ren X, Chen S, Dai X, Guo W, Jiang H, Liao B (2016a) Functional genomic analysis of Aspergillus flavus interacting with resistant and susceptible peanut. Toxins (Basel) 8(2):46. https://doi.org/10.3390/toxins8020046

    Article  CAS  Google Scholar 

  • Wang M, Weiberg A, Lin F-M, Thomma BP, Huang H-D, Jin H (2016b) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2(10):16151

    Article  CAS  PubMed  Google Scholar 

  • Warburton ML, Williams WP (2014) Aflatoxin resistance in maize: what have we learned lately? Adv Bot 2014

    Google Scholar 

  • Warburton ML, Brooks TD, Krakowsky MD, Shan X, Windham GL, Williams WP (2009) Identification and mapping of new sources of resistance to aflatoxin accumulation in maize. Crop Sci 49(4):1403–1408

    Article  CAS  Google Scholar 

  • Warburton ML, Brooks TD, Windham GL, Williams WP (2011a) Identification of novel QTL contributing resistance to aflatoxin accumulation in maize. Mol Breed 27(4):491–499

    Article  CAS  Google Scholar 

  • Warburton ML, Williams WP, Hawkins L, Bridges S, Gresham C, Harper J, Ozkan S, Mylroie JE, Shan X (2011b) A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize. Toxins 3(7):754–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburton ML, Williams WP, Windham GL, Murray SC, Xu W, Hawkins LK, Duran JF (2013) Phenotypic and genetic characterization of a maize association mapping panel developed for the identification of new sources of resistance to Aspergillus flavus and aflatoxin accumulation. Crop Sci 53(6):2374–2383

    Article  CAS  Google Scholar 

  • Weissinger A, Liu Y, Scanlon S, Murray J, Cleveland T, Jaynes J, Mirkov E, Moonan F (1999) Transformation of peanut with the defensive peptidyl MIM D5C. In: Proceedings of the USDA-ARS aflatoxin elimination workshop, pp 66–68

    Google Scholar 

  • Weissinger A, Sampson K, Urban L, Ingram K, Payne G, Scanlon S, Liu Y, Cleveland T (2000) Transformation with genes enoding Peptidyl MIM®, as a means of reducing aflatoxin contamination in peanut. In: Proceedings of the 2000 USDA-ARS aflatoxin elimination workshop, pp 25–27

    Google Scholar 

  • Weissinger A, Wu M, Cleveland T (2003) Expression in transgenic peanut of maize RIP 1, a protein with activity against Aspergillus spp. In: Proceedings of the USDA-ARS aflatoxin elimination workshop, 2003. USDA, ARS, Oct 2003, Savannah, Georgia, Beltsville, Maryland

    Google Scholar 

  • Weissinger A, Wu M, Wang X, Isleib T, Stalker T, Shew B, Rajasekaran K, Cary J, Cleveland T (2007) Advancement and testing of transgenic peanuts with enhanced resistance to A. flavus. In: Proceedings of the 2007 annual aflatoxin/fumonisin workshop, Atlanta, GA, USA, pp 106–107

    Google Scholar 

  • White D, Rocheford T, Naidoo G, Paul C, Hamblin A, Forbes A (1998) Inheritance of molecular markers associated with, and breeding for resistance to Aspergillus ear rot and aflatoxin production in corn using Tex6. In: Proceedings of USDA-ARS aflatoxin elimination workshop, pp 4–6

    Google Scholar 

  • Widstrom N, Wilson D, McMillian W (1984) Ear resistance of maize inbreds to field aflatoxin contamination 1. Crop Sci 24(6):1155–1157

    Article  Google Scholar 

  • Widstrom N, Butron A, Guo B, Wilson D, Snook M, Cleveland T, Lynch R (2003) Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aspergillus spp. Eur J Agron 19(4):563–572

    Article  CAS  Google Scholar 

  • Wilkinson JR, Yu J, Bland JM, Nierman WC, Bhatnagar D, Cleveland TE (2007) Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC 143. Appl Microbiol Biotech 74(6):1308–1319. https://doi.org/10.1007/s00253-006-0768-9

    Article  CAS  Google Scholar 

  • Will M, Holbrook C, Wilson D (1994) Evaluation of field inoculation techniques for screening peanut genotypes for reaction to preharvest A. flavus group infection and aflatoxin contamination. Peanut Sci 21(2):122–125

    Google Scholar 

  • Willcox MC, Davis GL, Warburton ML, Windham GL, Abbas HK, Betrán J, Holland JB, Williams WP (2013) Confirming quantitative trait loci for aflatoxin resistance from Mp313E in different genetic backgrounds. Mol Breed 32(1):15–26

    Article  CAS  Google Scholar 

  • Williams WP, Windham G (2001) Registration of maize germplasm line Mp715. Crop Sci 41(4):1374

    Article  Google Scholar 

  • Williams WP, Windham GL (2006) Registration of maize germplasm line Mp717. Crop Science 46(3):1407

    Article  Google Scholar 

  • Williams WP, Windham GL (2012) Registration of Mp718 and Mp719 germplasm lines of maize. J Plant Reg 6(2):200

    Article  Google Scholar 

  • Williams WP, Davis F, Windham G, Buckley P (2002) Southwestern corn borer damage and aflatoxin accumulation in a diallel cross of maize. J Genet Breed 56(2):165–170

    CAS  Google Scholar 

  • Williams WP, Krakowsky MD, Scully BT, Brown RL, Menkir A, Warburton ML, Windham GL (2014) Identifying and developing maize germplasm with resistance to accumulation of aflatoxins. World Mycotoxin J 8(2):193–209

    Article  CAS  Google Scholar 

  • Williams WP, Windhan G, Buckley P (2003) Aflatoxin accumulation in maize after inoculation with Aspergillus flavus and infestation with South Western corn borer [Zea mays L.; Mississippi]. J Genet Breed 57:365–370

    CAS  Google Scholar 

  • Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 80(5):1106–1122

    Article  CAS  PubMed  Google Scholar 

  • Williams J, Aggarwal D, Jolly P, Phillips T, Wang J (2005) Connecting the dots: logical and statistical connections between aflatoxin exposure and HIV/AIDS. In: Peanut collaborative research support program

    Google Scholar 

  • Williams WP, Windham GL, Krakowsky MD, Scully BT, Ni X (2010) Aflatoxin accumulation in BT and non-BT maize testcrosses. J Crop Improv 24(4):392–399

    Article  CAS  Google Scholar 

  • Williams SB, Baributsa D, Woloshuk C (2014) Assessing Purdue Improved Crop Storage (PICS) bags to mitigate fungal growth and aflatoxin contamination. J Stored Prod Res 59:190–196

    Article  Google Scholar 

  • Williams WP, Windham GL, Matthews GA, Buckley PM (2018) Diallel analysis for aflatoxin accumulation and fall armyworm leaf-feeding damage in maize. J Crop Improv 32(2):254–263

    Article  CAS  Google Scholar 

  • Wilson D, Branch W, Beaver R, Maw B (1990) Screening peanut genotypes for resistance to aflatoxin accumulation. In: Proceeding of the American Peanut Research and Education Society

    Google Scholar 

  • Windham GL, Williams WP, Buckley PM, Abbas HK (2003) Inoculation techniques used to quantify aflatoxin resistance in corn. J Toxicol Toxin Rev 22(2–3):313–325

    Article  CAS  Google Scholar 

  • Wogan GN (2000) Impacts of chemicals on liver cancer risk. In: Seminars in cancer biology, vol 3. Elsevier, Amsterdam, pp 201–210

    Google Scholar 

  • Woloshuk CP, Cavaletto JR, Cleveland TE (1997) Inducers of aflatoxin biosynthesis from colonized maize kernels are generated by an amylase activity from Aspergillus flavus. Phytopathology 87(2):164–169. https://doi.org/10.1094/phyto.1997.87.2.164

    Article  CAS  PubMed  Google Scholar 

  • Wotton H, Strange R (1987) Increased susceptibility and reduced phytoalexin accumulation in drought-stressed peanut kernels challenged with Aspergillus flavus. Appl Environ Microbiol 53(2):270–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F (2004) Mycotoxin risk assessment for the purpose of setting international regulatory standards. ACS Publications

    Google Scholar 

  • Xiao D, Wang S, Zhang H (1999) Progress of research on resistance to aflatoxin contamination in groundnut. Peanut Sci Technol 7:124–129

    Google Scholar 

  • Xie C, Wen S, Liu H, Chen X, Li H, Hong Y, Liang X (2013) Overexpression of ARAhPR10, a member of the PR10 family, decreases levels of Aspergillus flavus infection in peanut seeds. Am J Plant Sci 4(03):6. https://doi.org/10.4236/ajps.2013.43079

    Article  CAS  Google Scholar 

  • Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142(2):429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue H, Isleib T, Payne G, OBrian G (2004a) Evaluation of post-harvest aflatoxin production in peanut germplasm with resistance to seed colonization and pre-harvest aflatoxin contamination. Peanut Sci 31(2):124–134

    Google Scholar 

  • Xue H, Isleib T, Stalker H, Payne G, OBrian G (2004b) Evaluation of Arachis species and interspecific tetraploid lines for resistance to aflatoxin production by Aspergillus flavus. Peanut Sci 31(2):134–141

    Google Scholar 

  • Yabe K, Nakajima H (2004) Enzyme reactions and genes in aflatoxin biosynthesis. Appl Microbiol Biotechnol 64(6):745–755

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Liang L, Ran F, Liu Y, Li Z, Lan H, Gao P, Zhuang Z, Zhang F, Nie X (2016a) The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Sci Rep 6:23259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Qin Q, Liu Y, Zhang L, Liang L, Lan H, Chen C, You Y, Zhang F, Wang S (2016b) Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus. Front Cell Infect Microbiol 6:190. https://doi.org/10.3389/fcimb.2016.00190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Liu Y, Liang L, Li Z, Qin Q, Nie X, Wang S (2017) The high-affinity phosphodiesterase PdeH regulates development and aflatoxin biosynthesis in Aspergillus flavus. Fungal Genet Biol 101:7–19. https://doi.org/10.1016/j.fgb.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Hruska Z, Di Mavungu JD (2015) Developments in detection and determination of aflatoxins. World Mycotoxin J 8(2):181–191

    Article  CAS  Google Scholar 

  • Yin Y, Yan L, Jiang J, Ma Z (2008) Biological control of aflatoxin contamination of crops. J Zhejiang Univ Sci B 9(10):787–792

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact 24(5):554–561

    Google Scholar 

  • Yin Z, Wang Y, Wu F, Gu X, Bian Y, Wang Y, Deng D (2014) Quantitative trait locus mapping of resistance to Aspergillus flavus infection using a recombinant inbred line population in maize. Mol Breed 33(1):39–49

    Article  CAS  Google Scholar 

  • Yu J (2012) Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins 4(11):1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Chang P-K, Bhatnagar D, Cleveland TE (2000) Cloning of a sugar utilization gene cluster in Aspergillus parasiticus. Biochim Biophys Acta (BBA) Gene Struct Expr 1493(1–2):211–214. https://doi.org/10.1016/s0167-4781(00)00148-2

  • Yu J, Chang P-K, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70(3):1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Fedorova ND, Montalbano BG, Bhatnagar D, Cleveland TE, Bennett JW, Nierman WC (2011) Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol Lett 322(2):145–149. https://doi.org/10.1111/j.1574-6968.2011.02345.x

    Article  CAS  PubMed  Google Scholar 

  • Yugandhar G (2005) Evaluation of mini core set of germplasm in groundnut (Arachis hypogaea L.). M.Sc. (Agri) thesis

    Google Scholar 

  • Zambettakis C (1975) Study of the contamination of several varieties of groundnut by Aspergillus flavus. Oleagineux (France)

    Google Scholar 

  • Zambettakis C, Waliyar F, Bockelee-Morvan A, De Pins O (1981) Results of four years of research on resistance of groundnut varieties to Aspergillus flavus. Oleagineux 36(7):377–385

    Google Scholar 

  • Zanon MSA, Chiotta M, Giaj-Merlera G, Barros G, Chulze S (2013) Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts. Int J Food Microbiol 162(3):220–225

    Article  Google Scholar 

  • Zanon MSA, Barros GG, Chulze SN (2016) Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Int J Food Microbiol 231:63–68

    Article  CAS  Google Scholar 

  • Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106(2):262–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Guo Z, Zhong H, Wang S, Yang W, Liu Y, Wang S (2014) RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Toxins 6(11):3187–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Cui M, Zhang J, Zhang L, Li C, Kan X, Sun Q, Deng D, Yin Z (2016) Confirmation and fine mapping of a major QTL for aflatoxin resistance in maize using a combination of linkage and association mapping. Toxins 8(9):258

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao X, Li C, Wan S, Zhang T, Yan C, Shan S (2018) Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep 45(2):119–131

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Liang X, Li Y, Li X, Li S (2002) Evaluation and application of introduced peanut cultivars for resistance to Aspergillus flavus invasion. J Peanut Sci 34:14–17

    CAS  Google Scholar 

  • Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6(1):e02288–e02214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber M, Calvert O, Kwolek W, Lillehoj E, Kang M (1978) Aflatoxin B1 production in an eight-line diallel of Zea mays infected with Aspergillus flavus. Phytopathology 68:1346–1349

    Article  CAS  Google Scholar 

  • Zummo N, Scott GE (1989) Evaluation of field inoculation techniques for screening maize genotypes against kernel infection by Aspergillus flavus in Mississippi. Plant Dis 73:313–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Bhatnagar-Mathur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, K., Sharma, K.K., Bhatnagar-Mathur, P. (2019). Biotechnological Strategies for Development of Aflatoxin-Free Crops. In: Jaiwal, P., Chhillar, A., Chaudhary, D., Jaiwal, R. (eds) Nutritional Quality Improvement in Plants. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-95354-0_11

Download citation

Publish with us

Policies and ethics