Skip to main content

Deep Learning for Math Knowledge Processing

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11006))

Included in the following conference series:

Abstract

The vast and fast-growing STEM literature makes it imperative to develop systems for automated math-semantics extraction from technical content, and for semantically-enabled processing of such content. Grammar-based techniques alone are inadequate for the task. We present a new project for using deep learning (DL) for that purpose. It will explore a number of DL and representation-learning models, which have shown superior performance in applications that involve sequences of data. As math and science involve sequences of text, symbols and equations, such as deep learning models are expected to deliver good performance in math-semantics extraction and processing.

The project has several goals: (1) to apply different DL models to math-semantics extraction and processing, designing more suitable models as needed, for such foundational tasks as accurate tagging and automated translation from to semantically-resolved machine understandable forms such as cMathML; (2) to create and make available to the public labeled math-content datasets for model training and testing, and Word2Vec/Math2Vec representations derived from large math datasets; and (3) to conduct extensive comparative performance evaluations gaining insights into which DL models, data representations, and traditional machine learning models, are best for the above-stated goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    arXiv.org, https://arxiv.org/.

  2. 2.

    NIST Digital Library of Mathematical Functions (DLMF) https://dlmf.nist.gov/.

  3. 3.

    (World) Digital Mathematics Library, https://www.math.unibielefeld.de/~rehmann/DML/dml_links.html.

  4. 4.

    The European Digital Mathematics Library, https://eudml.org/.

  5. 5.

    Göttinger Digitalisierungszentrum, http://gdz.sub.uni-goettingen.de/gdz/.

  6. 6.

    The database MathSciNet, http://www.ams.org/mathscinet/.

  7. 7.

    The database zbMATH, http://www.zentralblatt-math.org/zbmath/.

  8. 8.

    https://www.w3.org/Math/.

  9. 9.

    https://deeplearning4j.org/.

References

  1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  2. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol. 7978, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39593-2_1

    Chapter  Google Scholar 

  3. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: Joint learning of words and meaning representations for open-text semantic parsing. In: AISTATS (2012)

    Google Scholar 

  4. Bengio, Y., LeCun, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Carette, J., Farmer, W.M.: A review of mathematical knowledge management. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) CICM 2009. LNCS (LNAI), vol. 5625, pp. 233–246. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02614-0_21

    Chapter  Google Scholar 

  7. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Gated feedback recurrent neural networks. In: ICML (2015)

    Google Scholar 

  8. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. ArXiv e-prints, abs/1409.1259 (2014)

    Google Scholar 

  9. Cho, K., van Merriënboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: The Empiricial Methods in Natural Language Processing (EMNLP 2014) (2014)

    Google Scholar 

  10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  11. Cohl, H.S., et al.: Semantic preserving bijective mappings of mathematical formulae between document preparation systems and computer algebra systems. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 115–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_9

    Chapter  Google Scholar 

  12. Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., Makhoul, J.: Fast and robust neural network joint models for statistical machine translation. In: Proceedings of the ACL 2014 (2014)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  14. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012)

    Article  Google Scholar 

  15. Ginev, D., Jucovschi, C., Anca, S., Grigore, M., David, C., Kohlhase, M.: An architecture for linguistic and semantic analysis on the arXMLiv corpus. In: Applications of Semantic Technologies (AST) Workshop at Informatik (2009)

    Google Scholar 

  16. Gao, L., et al.: Preliminary exploration of formula embedding for mathematical information retrieval: can mathematical formulae be embedded like a natural language? arXiv:1707.05154 (2017)

  17. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. SCI. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2

    Book  MATH  Google Scholar 

  18. Guidi, F., Sacerdoti Coen, C.: A survey on retrieval of mathematical knowledge. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 296–315. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_20

    Chapter  Google Scholar 

  19. Hastie, T.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2013)

    Google Scholar 

  20. Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into document embedding generation. In: 1st Workshop on Representation Learning for NLP (2016)

    Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  22. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Pearson Education, London (2009)

    Google Scholar 

  23. Kim, Y.: Convolutional neural networks for sentence classification. In: Conference on Empirical Methods in NLP, October 2014, Doha, Qatar, pp. 1746–1751 (2014)

    Google Scholar 

  24. Kohlhase, M.: Semantic markup for mathematical statements. v1.2 (2016)

    Google Scholar 

  25. Kottwitz, S.: Beginner’s Guide. PACKT Publishing, Birmingham (2001)

    Google Scholar 

  26. Kstovski, K., Blei, D.M.: Equation Embeddings, March 2018. https://arxiv.org/abs/1803.09123

  27. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: 2010 IEEE Internatioanl Symposium on Circuits and Systems (ISCAS), pp. 253–256 (2010)

    Google Scholar 

  28. Lai, S., Liu, K., He, S., Zhao, J.: How to generate a good word embedding. IEEE Intell. Syst. 31(6), 5–14 (2016)

    Article  Google Scholar 

  29. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196, January 2014

    Google Scholar 

  30. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: International Conference on Learning Representations: Workshops Track (2013)

    Google Scholar 

  31. Miller, B.: : A to XML/HTML/MathML Converter. http://dlmf.nist.gov/LaTeXML/

  32. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  33. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  34. Malon, C.D., Uchida, S., Suzuki, M.: Mathematical symbol recognition with support vector machines. Pattern Recogn. Lett. 29, 1326–1332 (2008)

    Article  Google Scholar 

  35. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. 41(2), 1–69 (2009)

    Article  Google Scholar 

  36. Neumaier, A., Schodl, P.: A framework for representing and processing arbitrary mathematics. In: International Conference on Knowledge Engineering and Ontology Development, pp. 476–479 (2010)

    Google Scholar 

  37. Nickel, M., Kiela, D.: Poincare enbeddings for learning hierarchical representations. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  38. Nghiem, M.-Q., Yokoi, K., Matsubayashi, Y., Aizawa, A.: Mining coreference relations between formulas and text using Wikipedia. In: 2nd Workshop on NLP Challenges in the Information Explosion Era, Beijing, pp. 69–74 (2010)

    Google Scholar 

  39. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., (eds.): NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.0.18 of 27 Mar 2018

  40. Piotr, B., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Google Scholar 

  41. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: The 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 25–29 October 2014, pp. 1532–1543 (2014)

    Google Scholar 

  42. Rudolph, M., Ruiz, F., Athey, S., Blei, D.M.: Structured embedding models for grouped data. In: NIPS, pp. 250–260 (2017)

    Google Scholar 

  43. Schoneberg, U., Sperber, W.: POS tagging and its applications for mathematics. In: CICM 2014, Coimbra, Portugal, pp. 213–223 (2014)

    MATH  Google Scholar 

  44. Schubotz, M., Grigorev, A., Leich, M., Cohl, H.S., Meuschke, N., Gippx, B., Youssef, A., Markl, V.: Semantification of identifiers in mathematics for better math information retrieval. In: The 39th Annual ACM SIGIR Conference (SIGIR 2016), Pisa, Italy, pp. 135–144, July 2016

    Google Scholar 

  45. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS (2014)

    Google Scholar 

  46. Watt, S.M.: Exploiting implicit mathematical semantics in conversion between TEX and MathML. TUGBoat 23(1), 108 (2002)

    Google Scholar 

  47. Wolska, M., Grigore, M., Kohlhase, M.: Using discourse context to interpret object-denoting mathematical expressions. In: Towards Digital Mathematics Library, DML workshop, pp. 85–101. Masaryk University, Brno (2011)

    Google Scholar 

  48. Youssef, A.: Part-of-math tagging and applications. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 356–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdou Youssef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Youssef, A., Miller, B.R. (2018). Deep Learning for Math Knowledge Processing. In: Rabe, F., Farmer, W., Passmore, G., Youssef, A. (eds) Intelligent Computer Mathematics. CICM 2018. Lecture Notes in Computer Science(), vol 11006. Springer, Cham. https://doi.org/10.1007/978-3-319-96812-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96812-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96811-7

  • Online ISBN: 978-3-319-96812-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics