Skip to main content

Optical Devices in Silicon Photonics

  • Chapter
  • First Online:
Optical Communications

Abstract

This chapter describes the development of passive and active components for silicon photonic integrated circuits that were performed in the CPqD. Specifically, the devices studied are polarization splitter and rotator (PSR), optical \(90^{\circ }\) hybrid, modulator, and laser. Each one is explained showing the principle of operation, modeling, and results obtained. These designed devices are compatible with standard manufacturing processes enabling monolithic integration with other devices. In addition, they can be used as building blocks for coherent transceivers and receivers in silicon photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu DX, Schmid JH, Reed GT, Mashanovich GZ, Thomson DJ, Nedeljkovic M, Chen X, Thourhout DV, Keyvaninia S, Selvaraja SK (2014) Silicon photonic integration platform-have we found the sweet spot. IEEE J Sel Top Quantum Electron 20(4):189–205. https://doi.org/10.1109/JSTQE.2014.2299634

    Article  Google Scholar 

  2. Thomson D, Zilkie A, Bowers JE, Komljenovic T, Reed GT, Vivien L, Marris-Morini D, Cassan E, Virot L, Fdli JM, Hartmann JM, Schmid JH, Xu DX, Boeuf F, OBrien P, Mashanovich GZ, Nedeljkovic M (2016) Roadmap on silicon photonics. J Opt 18(7):073,003. http://stacks.iop.org/2040-8986/18/i=7/a=073003

  3. Jalali B, Fathpour S (2006) Silicon photonics. IEEE J Lightwave Technol 24(12):4600–4616

    Article  Google Scholar 

  4. Chrostowski L, Hochberg M (2015) Silicon photonics design: from devices to systems, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Dai D, Bowers JE (2011) Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt Express 19:10,940–10,949

    Article  Google Scholar 

  6. Tu X, Li M, Xing J, Fu H, Geng D (2016) Compact PSR based on an asymmetric bi-level lateral taper in an adiabatic directional coupler. Photonics Technol Lett 34:985–991

    Google Scholar 

  7. de Farias GB, Freitas AP, Bustamante YRR, Moura UC, Motta DdA, Santana HF, Chiuchiarelli A, de Carvalho LHH, Reis JD (2017) Photonic integrated devices for high-capacity data-center interconnect. In: Proceedings of SPIE, vol 10131, pp 10,131 – 10,131 – 12. https://doi.org/10.1117/12.2256124

  8. Guan X, Wu H, Shi Y, Wosinski L, Dai D (2013) Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett 38(16):3005–3008

    Article  Google Scholar 

  9. Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y (2016a) Ultra-compact and highly efficient polarization splitter and rotator based on a silicon bent directional coupler. In: 42nd European conference and exhibition on optical communication (ECOC 2016). IET

    Google Scholar 

  10. Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y, Soref RA (2016b) Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photonics 1(9):091,304

    Article  Google Scholar 

  11. Wang J, Niu B, Sheng Z, Wu A, Wang X, Zou S, Qi M, Gan F (2014) Design of a \(\text{ SiO }_{2}\) top-cladding and compact polarization splitter-rotator based on a rib directional coupler. Opt Express 22(4):4137–4143

    Article  Google Scholar 

  12. Xiong Y, Xu DX, Schmid JH, Cheben P, Janz S, Winnie NY (2014) Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Opt Express 22(14):17,458–17,465

    Article  Google Scholar 

  13. Ding Y, Liu L, Peucheret C, Ou H (2012) Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Opt Express 20(18):20,021–20,027

    Article  Google Scholar 

  14. Troia B, De Leonardis F, Lanzafame M, Muciaccia T, Grasso G, Giannoccaro G, Campanella CE, Passaro V (2014) Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology. Adv Optoelectron 2014

    Google Scholar 

  15. Jeong SH, Morito K (2010) Novel optical 90\(^{\circ }\) hybrid consisting of a paired interference based \(2 \times 4\) MMI coupler, a phase shifter and a \(2 \times 2\) MMI coupler. J Lightwave Technol 28(9):1323–1331. https://doi.org/10.1109/JLT.2010.2042278

    Article  Google Scholar 

  16. Zhang J, Verbist J, Moeneclaey B, Van Weerdenburg J, Van Uden R, Chen H, Van Campenhout J, Okonkwo C, Yin X, Bauwelinck J, Roelkens G (2016) Compact low-power-consumption 28-Gbaud. QPSK/16-QAM integrated silicon photonic/electronic coherent receiver. IEEE Photonics J 8:1–10

    Google Scholar 

  17. Painchaud Y, Pelletier M, Poulin M, Pelletier F, Latrasse C, Robidoux G, Savard S, Gagn JF, Trudel V, Picard MJ, Poulin P, Sirois P, D’Amours F, Asselin D, Paquet S, Paquet C, Cyr M, Guy M, Morsy-Osman M, Zhuge Q, Xu X, Chagnon M, Plant DV (2013) Ultra-compact coherent receiver based on hybrid integration on silicon. In: 2013 optical fiber communication conference and exposition and the national fiber optic engineers conference (OFC/NFOEC), pp 1–3. https://doi.org/10.1364/OFC.2013.OM2J.2

  18. OIF (2017) Optical internetworking forum. http://www.oiforum.com/. Accessed 26 Jun 2017

  19. Yu H, Bogaerts W (2012) An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators. J Lightwave Technol 30(11):1602–1609

    Google Scholar 

  20. Azadeh SS, Merget F, Romero-García S, Moscoso-Mártir A, von den Driesch N, Müller J, Mantl S, Buca D, Witzens J (2015) Low \(\text{ v }\pi \) silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt Express 23(18):23,526–23,550

    Article  Google Scholar 

  21. Zhou Y, Zhou L, Zhu H, Wong C, Wen Y, Liu L, Li X, Chen J (2016) Modeling and optimization of a single-drive push-pull silicon Mach-Zehnder modulator. Photon Res 4(4):153–161

    Article  Google Scholar 

  22. Chen E, Chou SY (1997) Characteristics of coplanar transmission lines on multilayer substrates: modeling and experiments. IEEE Trans Microwave Theory Tech 45(6):939945

    Google Scholar 

  23. Soref RA, Bennett BR (1987) Electrooptical effects in silicon. IEEE J Quantum Electron 23:123–129

    Article  Google Scholar 

  24. Nedeljkovic M, Soref RA, Mashanovich GZ (2012) Free-carrier electro-absorption and electro-refraction modulation in group iv materials at mid-infrared wavelengths. In: Kubby J, Reed GT (eds) Silicon Photonics VII, SPIE, vol 8266, pp 82,660Y–82,660Y–7

    Google Scholar 

  25. Patel D (2014) Design, analysis, and performance of a silicon photonic traveling wave Mach-Zehnder modulator. Master degree dissertation

    Google Scholar 

  26. Reed GT, Mashanovich GZ, Gardes FY, Nedeljkovic M, Hu Y, Thomson DJ, Li K, Wilson PR, Chen SW, Hsu SS (2014) Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics 3(4–5). https://doi.org/10.1515/nanoph-2013-0016

  27. Jayatilleka H, Sacher WD, Poon JKS (2013) Analytical model and fringing-field parasitics of carrier-depletion silicon-on-insulator optical modulation diodes. IEEE Photon J 5(1):2,200,211–2,200,211

    Article  Google Scholar 

  28. Zhou Y, Zhou L, Zhu H, Wong C, Wen Y, Liu L, Li X, Chen J (2016) Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator. Photon Res 4(4):153–161. https://doi.org/10.1364/PRJ.4.000153, http://www.osapublishing.org/prj/abstract.cfm?URI=prj-4-4-153

  29. Chen L, Dong P, Chen YK (2012) Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s. IEEE Photonics Technol Lett 24(11):936–938. https://doi.org/10.1109/LPT.2012.2191149

    Article  Google Scholar 

  30. Motta DA, Bustamante YRR, Freitas AP, de Farias UCM Giovanni B de Farias, Gabrielli LH (2017) Design of a 40 GHz bandwidth slow-wave silicon modulator. In: SBMO/IEEE MTT-S international microwave and optoelectronics conference (IMOC), 2017

    Google Scholar 

  31. Heinrich W (1993) Quasi-TEM description of MMIC coplanar lines including conductor-loss effects. IEEE Trans Microw Theory Tech 41(1):45–52. https://doi.org/10.1109/22.210228

    Article  Google Scholar 

  32. Kobayashi N, Sato K, Namiwaka M, Yamamoto K, Watanabe S, Kita T, Yamada H, Yamazaki H (2015) Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J Lightwave Technol 33(6):1241–1246. https://doi.org/10.1109/JLT.2014.2385106

    Article  Google Scholar 

  33. Komljenovic T, Davenport M, Hulme J, Liu AY, Santis CT, Spott A, Srinivasan S, Stanton EJ, Zhang C, Bowers JE (2016) Heterogeneous silicon photonic integrated circuits. https://doi.org/10.1109/JLT.2015.2465382

    Article  Google Scholar 

  34. Verdier A, de Valicourt G, Brenot R, Debregeas H, Dong P, Earnshaw M, Carrere H, Chen YK (2017) Ultra-wide band wavelength-tunable hybrid external-cavity lasers. J Lightwave Technol 8724(c):1–1. https://doi.org/10.1109/JLT.2017.2757603, URL http://ieeexplore.ieee.org/document/8052475/

  35. Chu T, Fujioka N, Tokushima M, Nakamura S, Ishizaka M (2010) Full C and L bands wavelength tunable laser module with silicon micro-ring resonators. In: OptoeElectronics and communications conference (OECC), 2010 15th 1(July), pp 866–867

    Google Scholar 

  36. Wang Q, He S (2003) Optimal design of a flat-top interleaver based on cascaded M-Z interferometers by using a genetic algorithm. Opt Commun 224(4–6):229–236. https://doi.org/10.1016/j.optcom.2003.07.016

    Article  Google Scholar 

  37. Zhou L, Zhang X, Lu L, Chen J (2013) Tunable vernier microring optical filters with p-i-p-type microheaters. IEEE Photonics J 5(4). https://doi.org/10.1109/JPHOT.2013.2271901

  38. Liu B, Shakouri A, Bowers JE (2001) Passive microring-resonator-coupled lasers. Appl Phys Lett 79(22):3561–3563. https://doi.org/10.1063/1.1420585

    Article  Google Scholar 

  39. Santana HF, de Farias GB, Freitas AP, Motta DdA, Carvalho Jr W (2017) Design of a 80-nm tunable hybrid III / V-on-silicon laser. In: SBMO/IEEE MTT-S international microwave and optoelectronics conference (IMOC), 2017

    Google Scholar 

Download references

Acknowledgements

The authors thank Stenio M. Ranzini for reviewing a draft of this chapter and also acknowledge FAPESP under grant 2016/20615-8 for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesica R. R. Bustamante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bustamante, Y.R.R., Moura, U., Santana, H.F., de Farias, G.B. (2019). Optical Devices in Silicon Photonics. In: Paradisi, A., Carvalho Figueiredo, R., Chiuchiarelli, A., de Souza Rosa, E. (eds) Optical Communications. Telecommunications and Information Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-97187-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97187-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97186-5

  • Online ISBN: 978-3-319-97187-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics