Skip to main content

Kinetics of and Transport Phenomena in Gas–Solid Reactors

  • Chapter
  • First Online:
The Chemical Reactor from Laboratory to Industrial Plant

Abstract

The fundamental laws of mass, heat, and momentum transport are briefly presented in this chapter and their relationships with chemical kinetics depicted. The approach presented starts with estimation of basic properties like viscosity, thermal conductivity, and mass diffusivity, all of which are of fundamental importance in describing transport phenomena. Transport phenomena originate gradients in temperature, pressure, and concentration that are the driving forces for transformations occurring in a system. Two scales of transformation can be considered, i.e., molecular and macroscopic. Molecular-transport phenomena are normally much slower than macroscopic ones and this can result in a limitation on chemical reaction rates. In this chapter, detailed examples of basic property calculations are reported as are examples of chemical gas–solid reactions limited by diffusional resistance (like ammonia oxidation). Finally, a great part of the chapter is dedicated to the evaluation of catalyst effectiveness factor. Matlab code associated with the examples in this chapter is available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aris, R.: On shape factors for irregular particles—I: The steady state problem. Diffusion and reaction. Chem. Eng. Sci. 6(6), 262–268 (1957)

    Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot., E.N.: Transport Phenomena. John Wiley & Sons (1960)

    Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena Italian Edition Casa Editrice Ambrosiana (1970)

    Google Scholar 

  • Bradshaw, R.D., Bennet, C.O.: Fluid-particle mass transfer in a packed bed. A.I.Ch.E. J. 7(1), 48–52 (1961)

    Google Scholar 

  • Bridgman, P.W.: The thermal conductivity of liquids. sProc. Natl. Acad. Sci. USA 9(10), 341–345(1923)

    Google Scholar 

  • Brush, G.: Kinetic Theory, Vol. 1: The Nature of Gases and of Heat. Oxford (1965)

    Google Scholar 

  • Carberry, J.J.: A boundary-layer model of fluid-particle mass transfer in fixed beds. A.I.Ch.E. J. 6(3),s1960)

    Google Scholar 

  • Carberry, J.J.: Physico-chemical aspects of mass and heat transfer in heterogeneous catalysis (Chap. 3). In: Anderson, J.R., Boudart, M. (ed.) Catalysis, vol. 8, pp. 131–171. Springer, Berlin (1987)

    Google Scholar 

  • Carrà, S., Forni, L.: Aspetti Cinetici della Teoria del Reattore Chimico. Tamburini Ed. (1974)

    Google Scholar 

  • Carrà, S., Ragaini, V., Zanderighi, L.: Operazioni di Trasferimento di Massa. Manfredi Editore, Milano (1969)

    Google Scholar 

  • Chapman, S.: The kinetic theory of simple and composite monatomic gases: viscosity, thermal conduction, and diffusion. Proc. Roy. Soc. London A 93, 1–20 (1916)

    Google Scholar 

  • Chapman S., Cowling T.G.: The Mathematical Theory of Non‐Uniform Gases, 3rd edn. Cambridge University Press (1970)

    Google Scholar 

  • Chilton, T.C., Colburn, A.P.: Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction. Ind. Eng. Chem. 26(11), 1183–1187 (1934)

    Google Scholar 

  • De Acetis, J., Thodos, G.: Mass and heat transfer in flow of gases through spherical packings. Ind. Eng. Chem. 52(12), 1003–1006 (1960)

    Article  Google Scholar 

  • Dwydevi, P.N., Upadhay, S.N.: Particle-fluid mass transfer in fixed and fluidized beds. Ind. Eng. Chem. Process Des. Dev. 16, 157 (1977)

    Article  Google Scholar 

  • Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. J. Physik 17, 549–561 (1905)

    Article  CAS  Google Scholar 

  • Enskog, D.: Kinetische Theorie der Vorgänge in mässig verdiinten Gases (Almqvist and Wiksells, Uppsala, (1917); translation by S.G. Brush in Kinetic Theory Vol. 3, Pergamon, Oxford (1965)

    Google Scholar 

  • Fairbanks, D.F., Wilke, C.R.: Diffusion coefficients in multicomponent gas mixtures. Ind. Eng. Chem. 42(3), 471–475 (1950)

    Article  CAS  Google Scholar 

  • Fogler, H.S.: Elements of Chemical Reaction Engineering. Prentice Hall Int. Editions (1986)

    Google Scholar 

  • Forni, L.: Fenomeni di Trasporto. Edizioni Cortina Milano (1979)

    Google Scholar 

  • Froment, G.F.: Fixed bed catalytic reactors—current design status. Ind. Eng. Chem. 59(2), 18–27 (1967)

    Article  CAS  Google Scholar 

  • Froment, G.F., Bischoff, K.B.: Chemical Reactor Analysis and Design. Wiley, New York (1990)

    Google Scholar 

  • Frössling, N.: Über die Verdunstung fallender Tropfen. Gerlands Beitr. Geophys. 52, 170–216 (1938)

    Google Scholar 

  • Gimeno, M.P., Gascon, J., Tellez, C., Herguido, J., Menedez, M.: Selective oxidation of o-xylene to phthalic anhydride over V2O5/TiO2: kinetic study in a fluidized bed reactor. Chem. Eng. Process. 47(9–10), 1844–1852 (2008)

    Google Scholar 

  • Hirschfelder, J.O., Bird, R.B., Spotz, E.L.: The transport properties of gases and gaseous mixtures. Chem. Revs. 44(1), 205–231 (1949)

    Google Scholar 

  • Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular theory of gases and liquids. Wiley, New York (1954)

    Google Scholar 

  • Holland, C.D., Anthony, R.G.: Fundamentals of Chemical Reaction Engineering. Prentice-Hall, London (1979)

    Google Scholar 

  • Horak, J., Pasek, J.: Design of Industrial Chemical Reactors from Laboratory Data. Heyden, London (1978)

    Google Scholar 

  • Johnson, P.A., Babb, A.L.: Liquid diffusion of non-electrolytes. Chem. Rev. 56, 387–453 (1956)

    Article  CAS  Google Scholar 

  • Lee, H.H.: Heterogeneous Reactor Design. Butterworth Pu. (1984)

    Google Scholar 

  • Levenspiel, O.: The Chemical Reactor Omnibook. OSU Book Store, Oregon (1984)

    Google Scholar 

  • Missen, R.W., Mims, C.A., Saville, B.A.: Introduction to Chemical Reaction Engineering and Kinetics. Wiley. New York (1999)

    Google Scholar 

  • Ranz, W.E., Marshall Jr., W.R.: Evaporation from drops. Chem. Eng. Prog. 48(3), 141–146 (1952a)

    Google Scholar 

  • Ranz, W.E., Marshall Jr., W.R.: Evaporation from drops part II. Chem. Eng. Prog. 48(4), 173–180 (1952b)

    Google Scholar 

  • Rase, H.F.: Chemical Reactor Design for Process Plant, Vol. 2: Case Study N. 109, pp. 115–122j. Wiley, New York (1977)

    Google Scholar 

  • Riggs, J.B.: Introduction to numerical methods in chemical engineering. Texas Tech Univ. Press (1988)

    Google Scholar 

  • Rowlinson, J.S., Townley, J.R.: The application of the principle of corresponding states to the transport properties of gases. Trans. Faraday Soc. 49, 20–27 (1953)

    Article  CAS  Google Scholar 

  • Santacesaria, E.: Kinetics and transpssort phenomena in heterogeneous gas-solid and gas-liquid-solid systems. Catal. Today 34(3–4), 411–420 (1997)

    Article  CAS  Google Scholar 

  • Satterfield, C.N., Sherwood, T.K.: The Role of Diffusion in Catalysis. Addison Wesley Pu. Co. Inc. (1963)

    Google Scholar 

  • Satterfield, C.N.: Heterogeneous Catalysis in Practice. Addison-Wesley (1972)

    Google Scholar 

  • Satterfield, C.N., Cortez, D.H.: mass transfer characteristics of woven-wire screen catalysts. Ind. Eng. Chem. Fundam. 9(4), 613–620 (1970)

    Article  CAS  Google Scholar 

  • Smith J.M.: Chemical Engineering Kinetics. Mc Graw-Hill Book Co., New York (1981)

    Google Scholar 

  • Stull, D.R., Westrum, E.F., Sinke, G.C.:The Chemical Thermodynamics of Organic Compounds. Wiley, New York (1969)

    Google Scholar 

  • Thoenes, D., Kramers, H.: Mass transfer from spheres in various regular packings to a flowing fluid. Chem. Eng. Sci. 8(3–4), 271–283 (1958)

    Google Scholar 

  • Treybal, R.E.: Mass Transfer Operations. Mc Graw-Hill Co., New York (1955)

    Google Scholar 

  • Weisz, P.B., Hicks, J.S.: The behavior of porous catalyst particles in view of internal mass and heat diffusion effects. Chem. Eng. Sci. 17, 265-275 (1962)

    Google Scholar 

  • Weisz, P.B., Prater, C.D.: Interpretation of measurements in experimental catalysis. Adv. Catal. 6, 143–196 (1954)

    Google Scholar 

  • Wilke, C.R., Chang, P.: Correlation of diffusion coefficients in dilute solutions, AICHE J. 1(2), 264-270 (1955)

    Google Scholar 

  • Winterbottom, J.M., King, M.: Reactor Design for Chemical Engineers. CRC Press, 1ed (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elio Santacesaria .

6.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Appendices

Appendix 1: Lennard–Jones Force Constants Calculated from Viscosity Data

Compound

\( \epsilon /k,\;^\circ {\text{K}} \)

σ, A

Compound

\( \epsilon /k,\;^\circ {\text{K}} \)

σ, A

Acetylene

185

4.221

Hydrogen

33.3

2.968

Air

97

3.617

Hydrogen chloride

360

3.305

Argon

124

3.418

Hydrogen iodide

324

4.123

Arsine

281

4.06

Iodine

550

4.982

Benzene

440

5.270

Krypton

190

3.61

Bromine

520

4.268

Methane

136.5

3.822

i-Butane

313

5.341

Methanol

507

3.585

n-Butane

410

4.997

Methylene chloride

406

4.759

Carbon dioxide

190

3.996

Methyl chloride

855

3.375

Carbon disulfide

488

4.438

Mercuric iodide

691

5.625

Carbon monoxide

110

3.590

Mercury

851

2.898

Carbon tetra-chloride

327

5.881

Neon

35.7

2.789

Carbonyl sulfide

335

4.13

Nitric oxide

119

3.470

Chlorine

357

4.115

Nitrogen

91.5

3.681

Chloroform

327

5.430

Nitrous oxide

220

3.879

Cyanogen

339

4.38

n-Nonane

240

8.448

Cyclohexane

324

6.093

n-Octane

320

7.451

Ethane

230

4.418

Oxygen

113

3.433

Ethanol

391

4.455

n-Pentane

345

5.769

Ethylene

205

4.232

Propane

254

5.061

Fluorine

112

3.653

Sulfur dioxide

252

4.290

Helium

10.22

2.576

Water

356

2.649

n-Heptane

282

8.88

Xenon

229

4.055

n-Hexane

413

5.909

 
  1. See Satterfield and Sherwood (1963), Hirschfelder et al. (1949, 1954), Rowlinson and Townley (1953)

Appendix 2: Collision Integrals Ωµ and ΩD as a Function of T* = KBT/ε for Apolar Molecules: Lennard–Jones Approach

As explained in the text, the following correlation was used for interpolating both of the collision integrals:

$$ \Omega _{i} = 10^{{\left( {ax^{6} + bx^{5} + cx^{4} + dx^{3} + ex^{2} + fx + g} \right)}} \quad {\text{where}}\;\;x = \log_{10} (T^{*} ) $$

The best-fitting coefficients for the polynomials related to ΩD and Ωμ are listed in the following table.

Integral

a

b

c

d

e

f

g

ΩD

−0.0120

0.0877

−0.2146

0.1426

0.1948

−0.4848

0.1578

Ωμ

−0.0165

0.1204

−0.3011

0.2360

0.1708

−0.4922

0.1997

Data to be interpolated are reported in the following table.

T*

ΩD

Ωμ

T*

ΩD

Ωμ

T*

ΩD

Ωμ

0.30

2.6620

2.7850

1.65

1.1530

1.2640

4.00

0.8836

0.9700

0.35

2.4760

2.6280

1.70

1.1400

1.2480

4.10

0.8788

0.9649

0.40

2.3180

2.4920

1.75

1.1280

1.2340

4.20

0.8740

0.9600

0.45

2.1840

2.3680

1.80

1.1160

1.2210

4.30

0.8694

0.9553

0.50

2.0660

2.2570

1.85

1.1050

1.2090

4.40

0.8652

0.9507

0.55

1.9660

2.1560

1.90

1.0940

1.1970

4.50

0.8610

0.9464

0.60

1.8770

2.0650

1.95

1.0840

1.1860

4.60

0.8568

0.9422

0.65

1.7980

1.9820

2.00

1.0750

1.1750

4.70

0.8530

0.9382

0.70

1.7290

1.9080

2.10

1.0570

1.1560

4.80

0.8492

0.9343

0.75

1.6670

1.8410

2.20

1.0410

1.1380

4.90

0.8456

0.9305

0.80

1.6120

1.7800

2.30

1.0260

1.1220

5.00

0.8422

0.9269

0.85

1.5620

1.7250

2.40

1.0120

1.1070

6.00

0.8124

0.8963

0.90

1.5170

1.6750

2.50

0.9996

1.0930

7.00

0.7896

0.8727

0.95

1.4760

1.6290

2.60

0.9878

1.0810

8.00

0.7712

0.8538

1.00

1.4390

1.5870

2.70

0.9770

1.0690

9.00

0.7556

0.8379

1.05

1.4060

1.5490

2.80

0.9672

1.0580

10.00

0.7424

0.8242

1.10

1.3750

1.5140

2.90

0.9576

1.0480

20.00

0.6640

0.7432

1.15

1.3460

1.4820

3.00

0.9490

1.0390

30.00

0.6232

0.7005

1.20

1.3200

1.4520

3.10

0.9406

1.0300

40.00

0.5960

0.6718

1.25

1.2960

1.4240

3.20

0.9328

1.0220

50.00

0.5756

0.6504

1.30

1.2730

1.3990

3.30

0.9256

1.0140

60.00

0.5596

0.6335

1.35

1.2530

1.3750

3.40

0.9186

1.0070

70.00

0.5464

0.6194

1.40

1.2330

1.3530

3.50

0.9120

0.9999

80.00

0.5352

0.6076

1.45

1.2150

1.3330

3.60

0.9058

0.9932

90.00

0.5256

0.5973

1.50

1.1980

1.3140

3.70

0.8998

0.9870

100.00

0.5130

0.5882

1.55

1.1820

1.2960

3.80

0.8942

0.9811

200.00

0.4644

0.5320

1.60

1.1670

1.2790

3.90

0.8888

0.9755

300.00

0.4360

0.5016

      

400.00

0.4170

0.4811

  1. Data from Hirschfelder et al. (1954)

The coefficients were obtained using a MATLAB program importing all data from an Excel file. By applying the correlations found to the collision integrals, average absolute percent errors of 0.1396 and 0.2343% are obtained for, respectively, ΩD and Ωμ. Plots of the fittings obtained with the same program are reported in the following figures.

Figures related to Appendix 2. Fittings obtained by mathematical regression analysis on the data of ΩD and Ωμ available in the literature and plots of the errors.

These results can be obtained using a MATLAB program available as Electronic Supplementary Material.

Appendix 3: Parameters of the Stockmayer Equation for Some Polar Molecules

Substance

Dipol moment \( \mu_{\text{d}} ({\text{D}}) \)

\( \sigma \) \( ({\AA}) \)

\( \epsilon_{\text{o}} {/k}_{\text{B}} (k) \)

\( \delta = \frac{{\mu_{\text{d}}^{2} }}{{2\epsilon_{\text{o}} \sigma^{3} }} \)

H2O

1.85

2.52

775

1.0

NH3

1.47

3.15

358

0.7

HCl

1.08

3.36

328

0.34

HBr

0.80

3.41

417

0.14

HI

0.42

4.13

313

0.029

SO2

1.63

4.04

347

0.42

H2S

0.92

3.49

343

0.21

NOCl

1.83

3.53

690

0.4

CHCl3

1.013

5.31

355

0.07

CH2Cl2

1.57

4.52

483

0.2

CH3Cl

1.87

3.94

414

0.5

CH3Br

1.80

4.25

382

0.4

C2H5Cl

2.03

4.45

423

0.4

CH3OH

1.70

3.69

417

0.5

C2H5OH

1.69

4.31

431

0.3

n-C3H7OH

1.69

4.71

495

0.2

i-C3H7OH

1.69

4.64

518

0.2

(CH3)2O

1.30

4.21

432

0.19

(C2H5)2O

1.15

5.49

362

0.08

(CH3)2CO

1.20

3.82

428

1.3

CH3COOCH3

1.72

5.04

418

0.2

CH3COOC2H5

1.78

5.24

499

0.16

CH3NO2

2.15

4.16

290

2.3

  1. 1 D (Debye) = 1 × 10−18 statcoulomb × cm = 1 × 10−18 dine ½ × cm2

Appendix 4: Collision Integral Ωμ as a Function of T* = KBT/ε and δ for Polar Molecules

The following correlations were used for determining both the collision integrals:

$$ \begin{aligned} f_{1} & = d_{1} + d_{2} \frac{\delta }{{T^{*} }} + d_{3} \frac{{\delta^{2} }}{{T^{{*^{2} }} }} + d_{4} \frac{{\delta^{3} }}{{T^{*} }} + d_{5} \delta^{4} \\ f_{2} & = \frac{{f_{1} \delta^{1.5} }}{{K^{{\log_{10} (T^{*} )}} }} \\ f_{3} & = a_{1} x^{6} + a_{2} x^{5} + a_{3} x^{4} + a_{4} x^{3} + a_{5} x^{2} + a_{6} x^{{}} + a_{7} \\\Omega _{i} & = 10^{{f_{2} + f_{3} }} \quad {\text{where}}\;\;x = \log_{10} (T^{*} )\;\;i = D{\text{ or }}\mu \\ \end{aligned} $$

The best-fitting coefficients for the functions related to ΩD and Ωμ are listed the following table.

 

Collision integrals

Parameter

ΩD

Ωμ

d 1

0.066225

0.067498

d 2

−0.002888

−0.002375

d 3

0.0000707

0.0000618

d 4

−0.0000626

−0.0000865

d 5

−0.0000785

−0.0001022

K

4.507

3.934

a 1

0.010254

0.010948

a 2

−0.033249

−0.039147

a 3

−0.014026

−0.005066

a 4

0.096320

0.105559

a 5

0.068759

0.049660

a 6

−0.434055

−0.425989

a 7

0.163439

0.203885

These coefficients were determined by mathematical regression analysis made on the data reported by the literature and summarized in the following two tables.

ΩD

T*

δ

0.00

0.25

0.50

0.75

1.00

1.50

2.00

2.50

0.10

4.00790

4.00200

4.65500

5.52100

6.45400

8.21300

9.52400

11.31000

0.20

3.13000

3.16400

3.35500

3.72100

4.19800

5.23000

6.22500

7.16000

0.30

2.64940

2.65700

2.77000

3.00200

3.31900

4.05400

4.78500

5.48300

0.40

2.31440

2.32000

2.40200

2.57200

2.81200

3.38600

3.97200

4.53900

0.50

2.06610

2.07300

2.14000

2.27800

2.47200

2.94600

3.43700

3.91800

0.60

1.87670

1.88500

1.94400

2.06000

2.22500

2.62800

3.05400

3.47400

0.70

1.72930

1.73800

1.79100

1.89300

2.03600

2.38800

2.76300

3.13700

0.80

1.62200

1.62200

1.67000

1.76000

1.88600

2.19800

2.53500

2.87200

0.90

1.51750

1.52700

1.57200

1.65300

1.76500

2.04400

2.34900

2.65700

1.00

1.43980

1.45000

1.49000

1.56400

1.66500

1.91700

2.19600

2.47800

1.20

1.32040

1.33000

1.36400

1.42500

1.50900

1.72000

1.95600

2.19900

1.40

1.23360

1.24200

1.27200

1.32400

1.39400

1.57300

1.77700

1.99000

1.60

1.16790

1.17600

1.20200

1.24600

1.30600

1.46100

1.63900

1.82700

1.80

1.11660

1.12400

1.14600

1.18500

1.23700

1.37200

1.53000

1.69800

2.00

1.07530

1.08200

1.10200

1.13500

1.18100

1.30000

1.44100

1.59200

2.50

1.00060

1.00500

1.02000

1.04600

1.18000

1.17000

1.27800

1.39700

3.00

0.95003

0.95380

0.96560

0.98520

1.01200

1.08200

1.16300

1.26500

3.50

0.91311

0.91620

0.92560

0.94130

0.96260

1.01900

1.09000

1.17000

4.00

0.88453

0.88710

0.89480

0.90760

0.92520

0.97210

1.03100

1.09800

5.00

0.84277

0.84460

0.85010

0.85920

0.87160

0.90530

0.94830

0.99840

6.00

0.81827

0.81420

0.81830

0.82510

0.83440

0.85980

0.89270

0.93160

7.00

0.78976

0.79080

0.79400

0.79930

0.80660

0.82650

0.85260

0.88360

8.00

0.77111

0.77200

0.77450

0.77880

0.78460

0.80070

0.82190

0.84740

9.00

0.75553

0.75620

0.75840

0.76190

0.76670

0.78000

0.79760

0.81890

10.00

0.74220

0.74280

0.74460

0.74750

0.75150

0.76270

0.77760

0.79570

12.00

0.72022

0.72060

0.72200

0.72410

0.72710

0.73540

0.74640

0.76000

14.00

0.70254

0.70290

0.70390

0.70550

0.70780

0.71420

0.72280

0.73340

16.00

0.68776

0.68800

0.68880

0.69010

0.69190

0.69700

0.70400

0.71250

18.00

0.67510

0.67530

0.67600

0.67700

0.67850

0.68270

0.68840

0.69550

20.00

0.66405

0.66420

0.66480

0.66570

0.66690

0.67040

0.67520

0.68110

25.00

0.64136

0.64150

0.64180

0.64250

0.64330

0.64570

0.64900

0.65310

30.00

0.62350

0.62360

0.62390

0.62430

0.62490

0.62670

0.62910

0.63210

35.00

0.60882

0.60890

0.60910

0.60940

0.60990

0.61120

0.61310

0.61540

40.00

0.59640

0.59640

0.59660

0.59690

0.59720

0.59830

0.59980

0.60170

50.00

0.57626

0.57630

0.57640

0.57660

0.57680

0.57750

0.57850

0.57980

75.00

0.54146

0.54150

0.54160

0.54160

0.54180

0.54210

0.54240

0.54290

100.00

0.51803

0.51810

0.51820

0.51840

0.51840

0.51850

0.51860

0.51870

Ωμ

T*

δ

0.00

0.25

0.50

0.75

1.00

1.50

2.00

0.10

4.10050

4.26600

4.83300

5.74200

6.62900

8.62400

10.34000

0.20

3.26260

3.30500

3.51600

3.91400

4.43300

5.57000

6.63700

0.30

2.83990

2.83600

2.93600

3.16800

3.51100

4.32900

5.12600

0.40

2.53100

2.52200

2.58600

2.74900

3.00400

3.64000

4.28200

0.50

2.28370

2.27700

2.32900

2.46000

2.66500

3.18700

3.72700

0.60

2.08380

2.08100

2.13000

2.24300

2.41700

2.86200

3.32000

0.70

1.92200

1.92400

1.97000

2.07200

2.22500

2.61400

3.02800

0.80

1.79020

1.79500

1.84000

1.93400

2.07000

2.41700

2.78800

0.90

1.68230

1.68900

1.73300

1.82000

1.94400

2.25800

2.59600

1.00

1.59290

1.60100

1.64400

1.72500

1.83800

2.12400

2.43500

1.20

1.45510

1.46500

1.50400

1.57400

1.67000

1.91300

2.18100

1.40

1.35510

1.36500

1.40000

1.46100

1.54400

1.75400

1.98900

1.60

1.28000

1.28900

1.32100

1.37400

1.44700

1.63000

1.83800

1.80

1.22190

1.23100

1.25900

1.30600

1.37000

1.53200

1.71800

2.00

1.17570

1.18400

1.20900

1.25100

1.30700

1.45100

1.61800

2.50

1.09330

1.10000

1.11900

1.15000

1.19300

1.30400

1.43500

3.00

1.03880

1.04400

1.05900

1.08300

1.11700

1.20400

1.31000

3.50

0.99630

1.00400

1.01600

1.03500

1.06200

1.13300

1.22000

4.00

0.96988

0.97320

0.98300

0.99910

1.02100

1.07900

1.15300

5.00

0.92676

0.92910

0.93600

0.94730

0.96280

1.00500

1.05800

6.00

0.89616

0.89790

0.90300

0.91140

0.92300

0.95450

0.99550

7.00

0.87272

0.87410

0.87800

0.88450

0.89350

0.91810

0.95050

8.00

0.85379

0.85490

0.85800

0.86320

0.87030

0.89010

0.91640

9.00

0.83795

0.83880

0.84140

0.84560

0.85150

0.86780

0.88950

10.00

0.82435

0.82510

0.82730

0.83080

0.83560

0.84930

0.86760

12.00

0.80184

0.80240

0.80390

0.80650

0.81010

0.82010

0.83370

14.00

0.78363

0.78400

0.78520

0.78720

0.78990

0.79760

0.80810

16.00

0.76834

0.76870

0.76960

0.77120

0.77330

0.77940

0.78780

18.00

0.75518

0.75540

0.75620

0.75750

0.75920

0.76420

0.77110

20.00

0.74364

0.74380

0.74450

0.74550

0.74700

0.75120

0.75690

25.00

0.71982

0.72000

0.72040

0.72110

0.72210

0.72500

0.72890

30.00

0.70097

0.70110

0.70140

0.70190

0.70260

0.70470

0.70760

35.00

0.68545

0.68550

0.68580

0.68610

0.68670

0.68830

0.69050

40.00

0.67232

0.67240

0.67260

0.67280

0.67330

0.67450

0.67620

50.00

0.65099

0.65100

0.65120

0.65130

0.65160

0.65240

0.65340

75.00

0.61397

0.61410

0.61430

0.61450

0.61470

0.61480

0.61480

100.00

0.58870

0.58890

0.58940

0.59000

0.59030

0.59010

0.58950

A mathematical regression analysis was performed using a MATLAB program available as Electronic Supplementary Material.

By applying the correlations found in the calculation of the collision integrals, average absolute percent errors of 1.62 and 1.85% are obtained for, respectively, ΩD and Ωμ. The obtained fittings can be appreciated in the plots reported in the following figures.

Figures 1 related to Appendix 4. Fittings obtained by mathematical regression analysis on the data of ΩD available in the literature and parity plot .

Figures 2 related to Appendix 4. Fittings obtained by mathematical regression analysis on the data of Ωμ available in the literature and parity plot .

Appendix 5: Additive Volume Increments for the Estimation of the Molar Volume Vb at Normal Boiling Point

Substance

Vb increment, cm3/g mol

Air

29.9

Ammonia

25

Bromine

27

Carbon

14.8

Chlorine, terminal, as R–CI

21.6

      Medial, as R–CHC1–R

24.6

Fluorine

8.7

Helium

1.0

Hydrogen (in compound)

3.7

Hydrogen (molecular)

14.3

Mercury

15.7

Nitrogen

31.2

      In primary amines

10.5

      In secondary amines

12.0

Oxygen, molecular

14.8

      Doubly bound

7.4

      Methyl esters and ethers

9.1

      Ethyl esters and ethers

9.9

      Higher esters and ethers

11.0

      Acids

12.0

      Joined to S, P, or N

8.3

Phosphorus

27

Sulfur

25.6

Rings: 3-membered

−6

          4-membered

−8.5

          5-membered

−11.5

          6-membered

−15

          Naphthalene

−30

          Anthracene

−47.5

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santacesaria, E., Tesser, R. (2018). Kinetics of and Transport Phenomena in Gas–Solid Reactors. In: The Chemical Reactor from Laboratory to Industrial Plant. Springer, Cham. https://doi.org/10.1007/978-3-319-97439-2_6

Download citation

Publish with us

Policies and ethics