Skip to main content

Epigenetic and Pluripotency Aspects of Disseminated Cancer Cells During Minimal Residual Disease

  • Chapter
  • First Online:
Biological Mechanisms of Minimal Residual Disease and Systemic Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1100))

Abstract

Our understanding of the minimal residual disease (MRD) in solid cancers indicates that it can persist in the system for years or even decades. We now know that the persistence of MRD might depend on the dormancy of the disseminated cancer cells (DCCs). Once DCCs exit dormancy, they become metastatic and the survival rates of the patients inevitably decrease. Thus, innovative treatments are required to extend the asymptomatic phase of MRD after the initial therapeutic intervention. With the latest advances in cancer research, there is a greater need to explore and understand the biology, timing of dissemination, and origin of DCCs during tumor progression. These important aspects of DCCs impact the selection, design, administration, and timing of effective therapies. Herein, we summarize the current understanding of MRD biology in solid tumors, with a focus on epigenetics and pluripotency, presenting an overall view of the direction the field is taking to reach the goal of reducing cancer-related mortalities that result from metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADT:

androgen depletion therapy

AR:

androgen receptor

ATG:

autophagy-related gene

atRA:

all trans retinoic acid

BET:

bromodomain and extraterminal domain

BM:

bone marrow

BMP:

bone morphogenetic proteins

BP:

bisphosphonate

CAF:

cancer associated fibroblasts

CCC:

circulating cancer cells

CNV:

copy number variations

CSC:

cancer stem cells

CUP:

cancer of unknown primary origin

DCC:

disseminated cancer cells

DNMT1:

DNA methyltransferase 1

E2:

estradiol

ECM:

extracellular matrix

EGFR:

epithelial growth factor receptor

EMT:

epithelial-to-mesenchymal transition

ER:

estrogen receptor

ESC:

embryonic stem cell

GHB:

4-hydroxybutyrate

HDAC:

histone deacetylases

HER2:

human epidermal growth factor receptor 2

HF:

hair follicle

HNSCC:

head and neck squamous cell carcinoma

HPSCC:

hypopharyngeal squamous cell carcinoma

iPSC:

induced pluripotent stem cells

LA:

leukapheresis

LOH:

loss of heterozygosity

MALAT:

metastasis associated lung adenocarcinoma transcript 1

MMPs:

matrix metalloproteinases

MRD:

minimal residual disease

OSKM:

Oct3/4, Sox2, Klf4, and Myc transcription factors

PGR:

progesterone receptor

RARβ:

retinoic acid receptor β

SAM:

S-adenosylmethionine

SOX9:

SRY [sex determining region Y]- box 9

SPARC:

secreted protein acidic and rich in cysteine

SSADH:

succinic semialdehyde dehydrogenase

TET:

Ten-eleven Translocations

TF:

transcription factors

TGF-β:

transforming growth factor-β

TSS:

transcription start sites

αKG:

α-ketoglutarate

References

  1. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2017) SEER Cancer Statistics Review (CSR) 1975-2014. National Cancer Institute, Bethesda, MD

    Google Scholar 

  2. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dasgupta A, Lim AR, Ghajar CM (2017) Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol 11:40–61. https://doi.org/10.1002/1878-0261.12022

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611–622. https://doi.org/10.1038/nrc3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155:750–764. https://doi.org/10.1016/j.cell.2013.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sosa MS et al (2015) NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nat Commun 6:6170. https://doi.org/10.1038/ncomms7170

    Article  CAS  PubMed  Google Scholar 

  7. Bragado P et al (2013) TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol 15:1351–1361. https://doi.org/10.1038/ncb2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noltenius C, Noltenius H (1985) Dormant tumor cells in liver and brain. An autopsy study on metastasizing tumors. Pathol Res Pract 179:504–511. https://doi.org/10.1016/S0344-0338(85)80191-6

    Article  CAS  PubMed  Google Scholar 

  9. Braun S et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  CAS  PubMed  Google Scholar 

  10. Chery L et al (2014) Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5:9939–9951

    Article  PubMed Central  PubMed  Google Scholar 

  11. Schardt JA et al (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8:227–239

    Article  CAS  PubMed  Google Scholar 

  12. Rud AK et al (2016) Detection of disseminated tumor cells in lymph nodes from patients with early stage non-small cell lung cancer. Diagn Pathol 11:50. https://doi.org/10.1186/s13000-016-0504-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dhayat S et al (2012) Prognostic significance of EpCAM-positive disseminated tumor cells in rectal cancer patients with stage I disease. Am J Surg Pathol 36:1809–1816. https://doi.org/10.1097/PAS.0b013e318265288c

    Article  PubMed  Google Scholar 

  14. Sproll C et al (2017) Immunohistochemical detection of lymph node-DTCs in patients with node-negative HNSCC. Int J Cancer 140:2112–2124. https://doi.org/10.1002/ijc.30617

    Article  CAS  PubMed  Google Scholar 

  15. Linde N, Fluegen G, Aguirre-Ghiso JA (2016) The relationship between dormant cancer cells and their microenvironment. Adv Cancer Res 132:45–71. https://doi.org/10.1016/bs.acr.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ptak GE et al (2012) Embryonic diapause is conserved across mammals. PLoS ONE 7:e33027. https://doi.org/10.1371/journal.pone.0033027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meng S et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  18. Spiliotaki M et al (2014) Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy. Breast Cancer Res 16:485. https://doi.org/10.1186/s13058-014-0485-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strauss DC, Thomas JM (2010) Transmission of donor melanoma by organ transplantation. Lancet Oncol 11:790–796. https://doi.org/10.1016/S1470-2045(10)70024-3

    Article  PubMed  Google Scholar 

  20. Friberg S, Nystrom A (2015) Cancer metastases: early dissemination and late recurrences. Cancer Growth Meta 8:43–49. https://doi.org/10.4137/CGM.S31244

    Article  Google Scholar 

  21. Braun S et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  CAS  PubMed  Google Scholar 

  22. Janni W et al (2011) Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse--a European pooled analysis. Clin Cancer Res Off J Am Assoc Cancer Res 17:2967–2976. https://doi.org/10.1158/1078-0432.CCR-10-2515

    Article  Google Scholar 

  23. Hartkopf AD et al (2014) Prognostic relevance of disseminated tumour cells from the bone marrow of early stage breast cancer patients - results from a large single-centre analysis. Eur J Cancer 50:2550–2559. https://doi.org/10.1016/j.ejca.2014.06.025

    Article  PubMed  Google Scholar 

  24. Sosa MS (2016) Dormancy programs as emerging antimetastasis therapeutic alternatives. Mol Cell Oncol 3:e1029062. https://doi.org/10.1080/23723556.2015.1029062

    Article  CAS  PubMed  Google Scholar 

  25. Sanger N et al (2011) Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int J Cancer 129:2522–2526. https://doi.org/10.1002/ijc.25895

    Article  CAS  PubMed  Google Scholar 

  26. Deryugina EI, Kiosses WB (2017) Intratumoral Cancer Cell Intravasation Can Occur Independent of Invasion into the Adjacent Stroma. Cell Rep 19:601–616. https://doi.org/10.1016/j.celrep.2017.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt-Kittler O et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 100:7737–7742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Werner-Klein M et al (2018) Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nat Commun 9:595. https://doi.org/10.1038/s41467-017-02674-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Linde N et al (2018) Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun 9:21. https://doi.org/10.1038/s41467-017-02481-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harper K et al (2016) Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature. https://doi.org/10.1038/nature20609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hosseini H et al (2016) Early dissemination seeds metastasis in breast cancer. Nature. https://doi.org/10.1038/nature20785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Husemann Y et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    Article  PubMed  Google Scholar 

  34. Rhim AD et al (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148:349–361. https://doi.org/10.1016/j.cell.2011.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Narod SA, Iqbal J, Giannakeas V, Sopik V, Sun P (2015) Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol 1:888–896. https://doi.org/10.1001/jamaoncol.2015.2510

    Article  PubMed  Google Scholar 

  36. Fluegen G et al (2017) Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol 19:120–132. https://doi.org/10.1038/ncb3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cackowski FC et al (2017) Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J Cell Biochem 118:891–902. https://doi.org/10.1002/jcb.25768

    Article  CAS  PubMed  Google Scholar 

  38. Gao H et al (2014) Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 111:16532–16537. https://doi.org/10.1073/pnas.1403234111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406. https://doi.org/10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Beyec J et al (2007) Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res 313:3066–3075. https://doi.org/10.1016/j.yexcr.2007.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spencer VA, Xu R, Bissell MJ (2007) Extracellular matrix, nuclear and chromatin structure, and gene expression in normal tissues and malignant tumors: a work in progress. Adv Cancer Res 97:275–294. https://doi.org/10.1016/S0065-230X(06)97012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu R, Spencer VA, Bissell MJ (2007) Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem 282:14992–14999. https://doi.org/10.1074/jbc.M610316200

    Article  CAS  PubMed  Google Scholar 

  43. Kaukonen R et al (2016) Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun 7:12237. https://doi.org/10.1038/ncomms12237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827. https://doi.org/10.1038/nature04186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12:863–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Barkan D et al (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68:6241–6250. https://doi.org/10.1158/0008-5472.CAN-07-6849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mathot P et al (2017) DNA methylation signal has a major role in the response of human breast cancer cells to the microenvironment. Oncogene 6:e390. https://doi.org/10.1038/oncsis.2017.88

    Article  CAS  Google Scholar 

  48. Luo H, Tu G, Liu Z, Liu M (2015) Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett 361:155–163. https://doi.org/10.1016/j.canlet.2015.02.018

    Article  CAS  PubMed  Google Scholar 

  49. Shiozawa Y et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312. https://doi.org/10.1172/JCI43414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ho TT et al (2017) Autophagy maintains the metabolism and function of young and old stem cells. Nature 543:205–210. https://doi.org/10.1038/nature21388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adam AP et al (2009) Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res 69:5664–5672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hsu YC, Pasolli HA, Fuchs E (2011) Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144:92–105. https://doi.org/10.1016/j.cell.2010.11.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharma S et al (2016) Secreted Protein Acidic and Rich in Cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. J Biol Chem 291:19351–19363. https://doi.org/10.1074/jbc.M116.737379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kobayashi A et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208:2641–2655. https://doi.org/10.1084/jem.20110840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao H et al (2012) The BMP inhibitor coco reactivates breast cancer cells at lung metastatic sites. Cell 150:764–779. https://doi.org/10.1016/j.cell.2012.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Adam RC et al (2018) Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression. Cell Stem Cell. https://doi.org/10.1016/j.stem.2017.12.004

    Article  PubMed Central  PubMed  Google Scholar 

  57. Tran TQ, Lowman XH, Kong M (2017) Molecular pathways: metabolic control of histone methylation and gene expression in cancer. Clin Cancer Res 23:4004–4009. https://doi.org/10.1158/1078-0432.CCR-16-2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim RS et al (2012) Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS ONE 7:e35569. https://doi.org/10.1371/journal.pone.0035569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. El-Habr EA et al (2017) A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathol 133:645–660. https://doi.org/10.1007/s00401-016-1659-5

    Article  CAS  PubMed  Google Scholar 

  60. Ryall JG et al (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–183. https://doi.org/10.1016/j.stem.2014.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kapoor A et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105–1109. https://doi.org/10.1038/nature09590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen H et al (2015) MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol Cell 59:719–731. https://doi.org/10.1016/j.molcel.2015.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arun G et al (2016) Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30:34–51. https://doi.org/10.1101/gad.270959.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gutschner T et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:1180–1189. https://doi.org/10.1158/0008-5472.CAN-12-2850

    Article  CAS  PubMed  Google Scholar 

  65. Luo M et al (2015) Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 16:426–438. https://doi.org/10.1016/j.stem.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Venkatraman A et al (2013) Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500:345–349. https://doi.org/10.1038/nature12303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346. https://doi.org/10.1038/nature10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kostal V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127. https://doi.org/10.1016/j.jinsphys.2005.09.008

    Article  CAS  PubMed  Google Scholar 

  69. Reynolds JA, Bautista-Jimenez R, Denlinger DL (2016) Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. Insect Biochem Mol Biol 76:29–37. https://doi.org/10.1016/j.ibmb.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  70. Pegoraro M, Bafna A, Davies NJ, Shuker DM, Tauber E (2016) DNA methylation changes induced by long and short photoperiods in Nasonia. Genome Res 26:203–210. https://doi.org/10.1101/gr.196204.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Poupardin R et al (2015) Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genomics 16:720. https://doi.org/10.1186/s12864-015-1907-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ardehali MB et al (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30:2817–2828. https://doi.org/10.1038/emboj.2011.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Z et al (2014) The DPY30 subunit in SET1/MLL complexes regulates the proliferation and differentiation of hematopoietic progenitor cells. Blood 124:2025–2033. https://doi.org/10.1182/blood-2014-01-549220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang Z, Shah K, Khodadadi-Jamayran A, Jiang H (2016) Dpy30 is critical for maintaining the identity and function of adult hematopoietic stem cells. J Exp Med 213:2349–2364. https://doi.org/10.1084/jem.20160185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsai HC et al (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21:430–446. https://doi.org/10.1016/j.ccr.2011.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rada-Iglesias A et al (2012) Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell 11:633–648. https://doi.org/10.1016/j.stem.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Komashko VM, Farnham PJ (2010) 5-azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics 5:229–240

    Article  CAS  PubMed  Google Scholar 

  78. Miftakhova R et al (2012) DNA methylation in ATRA-treated leukemia cell lines lacking a PML-RAR chromosome translocation. Anticancer Res 32:4715–4722

    CAS  PubMed  Google Scholar 

  79. Phipps SM, Love WK, White T, Andrews LG, Tollefsbol TO (2009) Retinoid-induced histone deacetylation inhibits telomerase activity in estrogen receptor-negative breast cancer cells. Anticancer Res 29:4959–4964

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Landreville S et al (2012) Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res 18:408–416. https://doi.org/10.1158/1078-0432.CCR-11-0946

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Liu M, Jin Y, Jiang S, Pan J (2017) In vitro and in vivo anti-uveal melanoma activity of JSL-1, a novel HDAC inhibitor. Cancer Lett 400:47–60. https://doi.org/10.1016/j.canlet.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  82. Sharma SV et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80. https://doi.org/10.1016/j.cell.2010.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Davies C et al (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381:805–816. https://doi.org/10.1016/S0140-6736(12)61963-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu XF, Bagchi MK (2004) Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. J Biol Chem 279:15050–15058. https://doi.org/10.1074/jbc.M311932200

    Article  CAS  PubMed  Google Scholar 

  85. Stone A et al (2012) Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer. PLoS ONE 7:e40466. https://doi.org/10.1371/journal.pone.0040466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jimenez-Garduno AM et al (2017) IL-1beta induced methylation of the estrogen receptor ERalpha gene correlates with EMT and chemoresistance in breast cancer cells. Biochem Biophys Res Commun 490:780–785. https://doi.org/10.1016/j.bbrc.2017.06.117

    Article  CAS  PubMed  Google Scholar 

  87. Fang M, Hutchinson L, Deng A, Green MR (2016) Common BRAF(V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma. Proc Natl Acad Sci U S A 113:1250–1255. https://doi.org/10.1073/pnas.1525619113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hou P, Liu D, Dong J, Xing M (2012) The BRAF(V600E) causes widespread alterations in gene methylation in the genome of melanoma cells. Cell Cycle 11:286–295. https://doi.org/10.4161/cc.11.2.18707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zakharia Y et al (2017) Targeting epigenetics for treatment of BRAF mutated metastatic melanoma with decitabine in combination with vemurafenib: A phase lb study. Oncotarget 8:89182–89193. https://doi.org/10.18632/oncotarget.21269

    Article  PubMed  PubMed Central  Google Scholar 

  90. Paoluzzi L et al (2016) BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma. Cancer Med 5:1183–1193. https://doi.org/10.1002/cam4.667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hurley PJ et al (2015) Androgen-regulated SPARCL1 in the tumor microenvironment inhibits metastatic progression. Cancer Res 75:4322–4334. https://doi.org/10.1158/0008-5472.CAN-15-0024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Thompson VC et al (2012) A gene signature identified using a mouse model of androgen receptor-dependent prostate cancer predicts biochemical relapse in human disease. Int J Cancer 131:662–672. https://doi.org/10.1002/ijc.26414

    Article  CAS  PubMed  Google Scholar 

  93. Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32:5501–5511. https://doi.org/10.1038/onc.2013.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12:36–47. https://doi.org/10.1038/nrm3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamanaka S, Takahashi K (2006) Induction of pluripotent stem cells from mouse fibroblast cultures. Tanpakushitsu Kakusan Koso 51:2346–2351

    CAS  PubMed  Google Scholar 

  96. Kim J et al (2010) A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143:313–324. https://doi.org/10.1016/j.cell.2010.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061. https://doi.org/10.1016/j.cell.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  98. Scognamiglio R et al (2016) Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164:668–680. https://doi.org/10.1016/j.cell.2015.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu Z et al (2012) Regulation of p27Kip1 by Sox2 maintains quiescence of inner pillar cells in the murine auditory sensory epithelium. J Neurosci 32:10530–10540. https://doi.org/10.1523/JNEUROSCI.0686-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Surzenko N, Crowl T, Bachleda A, Langer L, Pevny L (2013) SOX2 maintains the quiescent progenitor cell state of postnatal retinal Muller glia. Development 140:1445–1456. https://doi.org/10.1242/dev.071878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Avincsal MO et al (2017) Epigenetic down-regulation of SOX2 is an independent poor prognostic factor for hypopharyngeal cancers. Histopathology. https://doi.org/10.1111/his.13436

    Article  PubMed  Google Scholar 

  102. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340. https://doi.org/10.1038/nrm3591

    Article  CAS  PubMed  Google Scholar 

  103. Avgustinova A, Benitah SA (2016) Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol 17:643–658. https://doi.org/10.1038/nrm.2016.76

    Article  CAS  PubMed  Google Scholar 

  104. Boonsanay V et al (2016) Regulation of skeletal muscle stem cell quiescence by Suv4-20h1-dependent facultative heterochromatin formation. Cell Stem Cell 18:229–242. https://doi.org/10.1016/j.stem.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  105. Cabezas-Wallscheid N et al (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169:807–823 e819. https://doi.org/10.1016/j.cell.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  106. Ghajar CM (2015) Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 15:238–247. https://doi.org/10.1038/nrc3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang X, Cruz FD, Terry M, Remotti F Matushansky I (2013) Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32, 2249–2260, 2260 e2241–2221, doi:10.1038/onc.2012.237

    Article  PubMed Central  PubMed  Google Scholar 

  108. Kollermann MW et al (1998) Supersensitive PSA-monitored neoadjuvant hormone treatment of clinically localized prostate cancer: effects on positive margins, tumor detection and epithelial cells in bone marrow. Eur Urol 34:318–324

    Article  CAS  PubMed  Google Scholar 

  109. Becker S, Solomayer E, Becker-Pergola G, Wallwiener D, Fehm T (2007) Primary systemic therapy does not eradicate disseminated tumor cells in breast cancer patients. Breast Cancer Res Treat 106:239–243. https://doi.org/10.1007/s10549-006-9484-5

    Article  PubMed  Google Scholar 

  110. Becker S, Becker-Pergola G, Wallwiener D, Solomayer EF, Fehm T (2006) Detection of cytokeratin-positive cells in the bone marrow of breast cancer patients undergoing adjuvant therapy. Breast Cancer Res Treat 97:91–96. https://doi.org/10.1007/s10549-005-9095-6

    Article  CAS  PubMed  Google Scholar 

  111. Naume B et al (2014) Clinical outcome with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer. J Clin Oncol 32:3848–3857. https://doi.org/10.1200/JCO.2014.56.9327

    Article  PubMed  Google Scholar 

  112. Solomayer EF et al (2012) Influence of zoledronic acid on disseminated tumor cells in primary breast cancer patients. Ann Oncol 23:2271–2277. https://doi.org/10.1093/annonc/mdr612

    Article  PubMed  Google Scholar 

  113. Banys M et al (2013) Influence of zoledronic acid on disseminated tumor cells in bone marrow and survival: results of a prospective clinical trial. BMC Cancer 13:480. https://doi.org/10.1186/1471-2407-13-480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ashworth TR (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aus Med J 14:146–147

    Google Scholar 

  115. Zhang L et al (2012) Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 18:5701–5710. https://doi.org/10.1158/1078-0432.CCR-12-1587

    Article  Google Scholar 

  116. Hayes DF et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res Off J Am Assoc Cancer Res 12:4218–4224. https://doi.org/10.1158/1078-0432.CCR-05-2821

    Article  CAS  Google Scholar 

  117. Maltoni R, Gallerani G, Fici P, Rocca A, Fabbri F (2016) CTCs in early breast cancer: a path worth taking. Cancer Lett 376:205–210. https://doi.org/10.1016/j.canlet.2016.03.051

    Article  CAS  PubMed  Google Scholar 

  118. Fischer JC et al (2013) Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc Natl Acad Sci U S A 110:16580–16585. https://doi.org/10.1073/pnas.1313594110

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fehm T et al (2009) Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res 11:R59. https://doi.org/10.1186/bcr2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Molloy TJ et al (2011) The prognostic significance of tumour cell detection in the peripheral blood versus the bone marrow in 733 early-stage breast cancer patients. Breast Cancer Res 13:R61. https://doi.org/10.1186/bcr2898

    Article  PubMed  PubMed Central  Google Scholar 

  121. Benoy IH et al (2006) Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer 94:672–680. https://doi.org/10.1038/sj.bjc.6602985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wiedswang G et al (2006) Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer 118:2013–2019. https://doi.org/10.1002/ijc.21576

    Article  CAS  PubMed  Google Scholar 

  123. Shaw JA et al (2012) Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 22:220–231. https://doi.org/10.1101/gr.123497.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Widschwendter M et al (2017) Methylation patterns in serum DNA for early identification of disseminated breast cancer. Genome Med 9:115. https://doi.org/10.1186/s13073-017-0499-9

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sigalotti L et al (2012) Whole genome methylation profiles as independent markers of survival in stage IIIC melanoma patients. J Transl Med 10:185. https://doi.org/10.1186/1479-5876-10-185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jiang W et al (2015) Genome-wide identification of a methylation gene panel as a prognostic biomarker in nasopharyngeal carcinoma. Mol Cancer Ther 14:2864–2873. https://doi.org/10.1158/1535-7163.MCT-15-0260

    Article  CAS  PubMed  Google Scholar 

  127. Akhtar-Zaidi B et al (2012) Epigenomic enhancer profiling defines a signature of colon cancer. Science 336:736–739. https://doi.org/10.1126/science.1217277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lian CG et al (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–1146. https://doi.org/10.1016/j.cell.2012.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Johnson KC et al (2016) 5-Hydroxymethylcytosine localizes to enhancer elements and is associated with survival in glioblastoma patients. Nat Commun 7:13177. https://doi.org/10.1038/ncomms13177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kafer GR et al (2016) 5-hydroxymethylcytosine marks sites of DNA damage and promotes genome stability. Cell Rep 14:1283–1292. https://doi.org/10.1016/j.celrep.2016.01.035

    Article  CAS  PubMed  Google Scholar 

  131. Fernandez AF et al (2012) A DNA methylation fingerprint of 1628 human samples. Genome Res 22:407–419. https://doi.org/10.1101/gr.119867.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mattout A, Biran A, Meshorer E (2011) Global epigenetic changes during somatic cell reprogramming to iPS cells. J Mol Cell Biol 3:341–350. https://doi.org/10.1093/jmcb/mjr028

    Article  CAS  PubMed  Google Scholar 

  133. Theunissen TW et al (2011) Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr Biol 21:65–71. https://doi.org/10.1016/j.cub.2010.11.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lin B et al (2015) Global analysis of H3K4me3 and H3K27me3 profiles in glioblastoma stem cells and identification of SLC17A7 as a bivalent tumor suppressor gene. Oncotarget 6:5369–5381. https://doi.org/10.18632/oncotarget.3030

    Article  PubMed  PubMed Central  Google Scholar 

  135. Trowbridge JJ et al (2012) Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 26:344–349. https://doi.org/10.1101/gad.184341.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang CH et al (2014) Identification of CD24 as a cancer stem cell marker in human nasopharyngeal carcinoma. PLoS ONE 9:e99412. https://doi.org/10.1371/journal.pone.0099412

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tung PY, Knoepfler PS (2015) Epigenetic mechanisms of tumorigenicity manifesting in stem cells. Oncogene 34:2288–2296. https://doi.org/10.1038/onc.2014.172

    Article  CAS  PubMed  Google Scholar 

  138. Price TT et al (2016) Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med 8:340ra373. https://doi.org/10.1126/scitranslmed.aad4059

    Article  Google Scholar 

Download references

Acknowledgments

M.S.S. was supported by the Schneider-Lesser Foundation Fellow Award, the Melanoma Research Alliance (MRA), the NCI Transition Career Development Award (K22) (22CA 201054), and the Susan G. Komen Career Catalyst Research Grants (basic/translational and clinical research) CCR17483357.

Disclosure Statement

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Soledad Sosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlini, M.J., Shrivastava, N., Sosa, M.S. (2018). Epigenetic and Pluripotency Aspects of Disseminated Cancer Cells During Minimal Residual Disease. In: Aguirre-Ghiso, J. (eds) Biological Mechanisms of Minimal Residual Disease and Systemic Cancer. Advances in Experimental Medicine and Biology, vol 1100. Springer, Cham. https://doi.org/10.1007/978-3-319-97746-1_1

Download citation

Publish with us

Policies and ethics