Skip to main content

Matrix Regression-Based Classification for Face Recognition

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

Partially occlusion is a common difficulty arisen in applications of face recognition, and many algorithms based on linear representation may pay attention to such cases. In this paper, we consider the partial occlusion problem via inner-class linear regression. Specifically, we develop a matrix regression-based classification (MRC) method in which every sample from the same class are represented as matrices instead of vector and adopted to encode a probe image under. In the regression step, a L21-norm based matrix regression model is proposed, which can efficiently depress the effect of occlusion in probe image. Accordingly, an efficient algorithm is derived to optimize the proposed objective function. In addition, we argue that the corrupted pixels in probe image should not be considered in decision step. Thus, we introduce a robust threshold to dynamically eliminate the corrupted rows in probe image before making decision. Performance of MRC is evaluated on several datasets and the results are compared with those of other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)

    Article  Google Scholar 

  2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  3. De La Torre, F., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vis. 54(1–3), 117–142 (2003)

    Article  Google Scholar 

  4. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  5. He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1561–1576 (2011)

    Article  Google Scholar 

  6. Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49(4), 764–766 (2013)

    Article  Google Scholar 

  7. Martinez, A.M.: The AR face database. CVC Technical report (1998)

    Google Scholar 

  8. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  9. Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint L2, 1-norms minimization. In: Advances in Neural Information Processing Systems, pp. 1813–1821 (2010)

    Google Scholar 

  10. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The feret database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  11. Ren, C.X., Dai, D.Q., Yan, H.: Robust classification using L2, 1-norm based regression model. Pattern Recogn. 45(7), 2708–2718 (2012)

    Article  Google Scholar 

  12. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Applications of Computer Vision Proceedings of the Second IEEE Workshop on 1994, pp. 138–142. IEEE (1994)

    Google Scholar 

  13. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Proceedings Automatic Face and Gesture Recognition Fifth IEEE International Conference on 2002, pp. 53–58. IEEE (2002)

    Google Scholar 

  14. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  15. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  16. Yang, J., Luo, L., Qian, J., Tai, Y., Zhang, F., Xu, Y.: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 156–171 (2017)

    Article  Google Scholar 

  17. Yang, M., Zhang, L., Yang, J., Zhang, D.: Regularized robust coding for face recognition. IEEE Trans. Image Process. 22(5), 1753–1766 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE international conference on 2011 Computer vision (ICCV), pp. 471–478 IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xun Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mi, JX., Zhu, Q., Luo, Z. (2018). Matrix Regression-Based Classification for Face Recognition. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics