Skip to main content

Simulation in Surgical Oncology and Hepato-Pancreato-Biliary Surgery

  • Chapter
  • First Online:
Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

  • 910 Accesses

Abstract

Surgical oncology encompasses the surgical treatment of malignancies of the skin, soft tissue, breast, gastrointestinal tract, head and neck, and thorax. Many of these anatomic locations are covered in other chapters of this book and will not be discussed further here. The focus of this chapter is on the role of simulation in acquiring and maintaining technical skills around liver, biliary, and pancreas surgery. The discussion points will include contexts in which simulation plays a role in hepato-pancreato-biliary (HPB) surgery, the modalities used for simulation-based training, curricula that have been described, and research priorities to further the meaningful application of simulation to improve the quality of training and patient outcomes in HPB surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boone BA, et al. Assessment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve. JAMA Surg. 2015;150(5):416–22.

    Article  Google Scholar 

  2. Shakir M, et al. The learning curve for robotic distal pancreatectomy: an analysis of outcomes of the first 100 consecutive cases at a high-volume pancreatic Centre. HPB (Oxford). 2015;17(7):580–6.

    Article  Google Scholar 

  3. Brown KM, Geller DA. What is the learning curve for laparoscopic major hepatectomy? J Gastrointest Surg. 2016;20(5):1065–71.

    Article  Google Scholar 

  4. Vigano L, et al. The learning curve in laparoscopic liver resection: improved feasibility and reproducibility. Ann Surg. 2009;250(5):772–82.

    Article  Google Scholar 

  5. Wakabayashi G, et al. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg. 2015;261(4):619–29.

    PubMed  Google Scholar 

  6. Chang YJ, Mittal VK. Hepato-pancreato-biliary training in general surgery residency: is it enough for the real world? Am J Surg. 2009;197(3):291–5.

    Article  Google Scholar 

  7. Daee SS, et al. Analysis and implications of changing hepatopancreatobiliary (HPB) case loads in general surgery residency training for HPB surgery accreditation. HPB (Oxford). 2013;15(12):1010–5.

    Article  Google Scholar 

  8. Malangoni MA, et al. Operative experience of surgery residents: trends and challenges. J Surg Educ. 2013;70(6):783–8.

    Article  Google Scholar 

  9. Committee, I.E.a.T. Standards for hepato-pancreato-biliary training; 2008 [cited 26 Sept 2016]. Available from: http://www.ihpba.org/media/hpb_training_standards.pdf.

  10. Bell RH Jr, et al. Operative experience of residents in US general surgery programs: a gap between expectation and experience. Ann Surg. 2009;249(5):719–24.

    Article  Google Scholar 

  11. Fong Y, et al. Long-term survival is superior after resection for cancer in high-volume centers. Ann Surg. 2005;242(4):540–4. discussion 544-7

    PubMed  PubMed Central  Google Scholar 

  12. Langer B. Role of volume outcome data in assuring quality in HPB surgery. HPB (Oxford). 2007;9(5):330–4.

    Article  Google Scholar 

  13. van der Geest LG, et al. Volume-outcome relationships in pancreatoduodenectomy for cancer. HPB (Oxford). 2016;18(4):317–24.

    Article  Google Scholar 

  14. Chen CC, et al. Warm-up on a simulator improves residents’ performance in laparoscopic surgery: a randomized trial. Int Urogynecol J. 2013;24(10):1615–22.

    Article  CAS  Google Scholar 

  15. Deuchler S, et al. Clinical efficacy of simulated vitreoretinal surgery to prepare urgeons for the upcoming intervention in the operating room. PLoS One. 2016;11(3):e0150690.

    Article  Google Scholar 

  16. Lee JY, et al. Laparoscopic warm-up exercises improve performance of senior-level trainees during laparoscopic renal surgery. J Endourol. 2012;26(5):545–50.

    Article  Google Scholar 

  17. Palter VN, et al. Ex vivo technical skills training transfers to the operating room and enhances cognitive learning: a randomized controlled trial. Ann Surg. 2011;253(5):886–9.

    Article  Google Scholar 

  18. Chipman JG, Schmitz CC. Using objective structured assessment of technical skills to evaluate a basic skills simulation curriculum for first-year surgical residents. J Am Coll Surg. 2009;209(3):364–370 e2.

    Article  Google Scholar 

  19. Korndorffer JR Jr, et al. The American College of Surgeons/Association of Program Directors in surgery National Skills Curriculum: adoption rate, challenges and strategies for effective implementation into surgical residency programs. Surgery. 2013;154(1):13–20.

    Article  Google Scholar 

  20. Scott DJ, Goova MT, Tesfay ST. A cost-effective proficiency-based knot-tying and suturing curriculum for residency programs. J Surg Res. 2007;141(1):7–15.

    Article  Google Scholar 

  21. Hsu JL, Korndorffer JR Jr, Brown KM. Design of vessel ligation simulator for deliberate practice. J Surg Res. 2015;197(2):231–5.

    Article  Google Scholar 

  22. Hsu JL, Korndorffer JR Jr, Brown KM. Force feedback vessel ligation simulator in knot-tying proficiency training. Am J Surg. 2016;211(2):411–5.

    Article  Google Scholar 

  23. Narumi S, et al. Introduction of a simulation model for choledocho- and pancreaticojejunostomy. Hepato-Gastroenterology. 2012;59(119):2333–4.

    PubMed  Google Scholar 

  24. Pugh CM, et al. Faculty evaluation of simulation-based modules for assessment of intraoperative decision making. Surgery. 2011;149(4):534–42.

    Article  CAS  Google Scholar 

  25. Sidhu HS, et al. Role of simulation-based education in ultrasound practice training. J Ultrasound Med. 2012;31(5):785–91.

    Article  Google Scholar 

  26. Terkamp C, et al. Simulation of abdomen sonography. Evaluation of a new ultrasound simulator. Ultraschall Med. 2003;24(4):239–4.

    Article  CAS  Google Scholar 

  27. Martin RC 2nd, et al. Irreversible electroporation in locally advanced pancreatic cancer: a call for standardization of energy delivery. J Surg Oncol. 2016;114(7):865–71.

    Google Scholar 

  28. Scheffer HJ, et al. Colorectal liver metastatic disease: efficacy of irreversible electroporation--a single-arm phase II clinical trial (COLDFIRE-2 trial). BMC Cancer. 2015;15:772.

    Article  Google Scholar 

  29. Hildebrand P, et al. Development of a perfused ex vivo tumor-mimic model for the training of laparoscopic radiofrequency ablation. Surg Endosc. 2007;21(10):1745–9.

    Article  Google Scholar 

  30. Scott DM, et al. Development of an in vivo tumor-mimic model for learning radiofrequency ablation. J Gastrointest Surg. 2000;4(6):620–5.

    Article  Google Scholar 

  31. Ali J, et al. Potential role of the advanced surgical skills for exposure in trauma (ASSET) course in Canada. J Trauma. 2011;71(6):1491–3.

    PubMed  Google Scholar 

  32. Bowyer MW, et al. Advanced surgical skills for exposure in trauma (ASSET): the first 25 courses. J Surg Res. 2013;183(2):553–8.

    Article  Google Scholar 

  33. Kirkpatrick AW, et al. The marriage of surgical simulation and telementoring for damage-control surgical training of operational first responders: a pilot study. J Trauma Acute Care Surg. 2015;79(5):741–7.

    Article  Google Scholar 

  34. White SA, et al. A cadaver lab training facility to facilitate laparoscopic liver resection. Surg Laparosc Endosc Percutan Tech. 2014;24(4):357–60.

    Article  Google Scholar 

  35. Wu JS, et al. Laparoscopic hepatic lobectomy in the porcine model. Surg Endosc. 1998;12(3):232–5.

    Article  CAS  Google Scholar 

  36. Prasad Rai B, et al. A qualitative assessment of human cadavers embalmed by Thiel's method used in laparoscopic training for renal resection. Anat Sci Educ. 2012;5(3):182–6.

    Article  Google Scholar 

  37. Teh SH, Hunter JG, Sheppard BC. A suitable animal model for laparoscopic hepatic resection training. Surg Endosc. 2007;21(10):1738–44.

    Article  Google Scholar 

  38. Carey JN, et al. Perfused fresh cadavers: method for application to surgical simulation. Am J Surg. 2015;210(1):179–87.

    Article  Google Scholar 

  39. Delpech PO, et al. SimLife a new model of simulation using a pulsated revascularized and reventilated cadaver for surgical education. J Visc Surg. 2017;154(1):15–20.

    Google Scholar 

  40. Faure JP, et al. SIM life: a new surgical simulation device using a human perfused cadaver. Surg Radiol Anat. 2017;39(2):211–7.

    Google Scholar 

  41. Condino S, et al. How to build patient-specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators. Int J Med Robot. 2011;7(2):202–13.

    Article  CAS  Google Scholar 

  42. Cameron BH, O'Regan PJ, Anderson DL. A pig model for advanced laparoscopic biliary procedures. Surg Endosc. 1994;8(12):1423–4.

    Article  CAS  Google Scholar 

  43. Watson DI, Treacy PJ, Williams JA. Developing a training model for laparoscopic common bile duct surgery. Surg Endosc. 1995;9(10):1116–8.

    Article  CAS  Google Scholar 

  44. Sanchez A, et al. Development of a training model for laparoscopic common bile duct exploration. JSLS. 2010;14(1):41–7.

    Article  Google Scholar 

  45. Teitelbaum EN, et al. A simulator-based resident curriculum for laparoscopic common bile duct exploration. Surgery. 2014;156(4):880–7, 890–3

    Article  Google Scholar 

  46. Burdall OC, et al. 3D printing to simulate laparoscopic choledochal surgery. J Pediatr Surg. 2016;51(5):828–31.

    Article  Google Scholar 

  47. Bric JD, et al. Current state of virtual reality simulation in robotic surgery training: a review. Surg Endosc. 2016;30(6):2169–78.

    Article  Google Scholar 

  48. Moglia A, et al. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69(6):1065–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly M. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, K.M. (2019). Simulation in Surgical Oncology and Hepato-Pancreato-Biliary Surgery. In: Stefanidis, D., Korndorffer Jr., J., Sweet, R. (eds) Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-98276-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98276-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98275-5

  • Online ISBN: 978-3-319-98276-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics