Skip to main content

Nanophotonic Advances for Room-Temperature Single-Photon Sources

  • Chapter
  • First Online:
Quantum Photonics: Pioneering Advances and Emerging Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 217))

Abstract

This review reports on recent advances in room-temperature single-photon sources (SPSs) with photons exhibiting antibunching (separation of all photons in time in contrast to faint laser sources), including the authors’ results on SPSs with definite circular and linear polarizations. SPSs are important devices in secure quantum communication . Some quantum computing schemes are also based on such sources. Quantum metrology, quantum memory and fundamental physics experiments are other applications of SPSs. The critical issue in producing “antibunched” photons is the very low concentration of photon emitters, such that, within an excitation-laser focal spot, only one emitter becomes excited and which will emit only one photon at a time. Single “giant” colloidal semiconductor nanocrystal quantum dots and dot-in-rods , diamond color centers (both bulk and nanodiamonds), and trivalent rare-earth ions (TR3+) have the best photostability (longest operating time) in room-temperature excitation. This review is focused on nanophotonic aspects of the problem, describing room-temperature SPSs based on these emitters and some new stable single-emitters. We also describe methods for emitter fluorescence enhancement: microcavities (including photonic bandgap, Bragg reflector and chiral liquid crystal microcavities), plasmonic nanoantennas, and metamaterials. Finally, we describe the alignment of anisotropic single emitters with liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  2. V. Scarani, H. Bechmann-Pasquinucci, N.J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  3. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995)

    Google Scholar 

  4. D.F. Walls, Evidence for the quantum nature of light. Nature 280, 451–454 (1979)

    Article  ADS  Google Scholar 

  5. H. Paul, Photon antibunching. Rev. Mod. Phys. 54, 1061–1102 (1982)

    Article  ADS  Google Scholar 

  6. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, Bangalore, India, 1984), p. 175

    Google Scholar 

  7. N. Lütkenhaus, Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 52304 (2000)

    Article  ADS  Google Scholar 

  8. W.-Y. Hwang, Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 57901 (2003)

    Article  ADS  Google Scholar 

  9. H.-K. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  10. N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, N. Gisin, Long-distance entanglement distribution with single-photon sources. Phys. Rev. A 76, 50301 (2007)

    Article  ADS  Google Scholar 

  11. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  12. H.-J. Briegel, S.J. van Enk, J.I. Cirac, P. Zoller, D. Bouwmeeester, J.-W. Pan, M. Daniell, H. Weinfurter, A. Zeilinger, V. Vedral, M.B. Plenio, P.L. Knight, Quantum networks and multi-particle entanglement, in The Physics of Quantum Information, ed. by D.D. Bouwmeester, P.A. Ekert, P.A. Zeilinger (Springer, Berlin Heidelberg, 2000), pp. 191–220

    Chapter  Google Scholar 

  13. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  14. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)

    Article  ADS  Google Scholar 

  15. A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photonics 3, 706–714 (2009)

    Article  ADS  Google Scholar 

  16. C. Simon, M. Afzelius, J. Appel, A.B. de la Giroday, S.J. Dewhurst, N. Gisin, C.Y. Hu, F. Jelezko, S. Kroll, J.H. Muller, J. Nunn, E. Polzik, J. Rarity, H. de Riedmatten, W. Rosenfeld, A.J. Shields, N. Skold, R.M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, R.J. Young, Quantum memories. A review based on the European Integrated Project “Qubit Applications (QAP)”. Eur. Phys. J. D. 58, 1–22 (2010)

    Article  ADS  Google Scholar 

  17. J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  18. X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J.M. Raimond, S. Haroche, Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79, 769–772 (1997)

    Article  ADS  Google Scholar 

  19. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  20. T.B. Pittman, B.C. Jacobs, J.D. Franson, Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)

    Article  ADS  Google Scholar 

  21. T.B. Pittman, B.C. Jacobs, J.D. Franson, Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 62311 (2001)

    Article  ADS  Google Scholar 

  22. A. Shields, Quantum logic with light, glass, and mirrors. Science 297, 1821–1822 (2002)

    Article  Google Scholar 

  23. G. Brida, M. Genovese, M. Gramegna, Twin-photon techniques for photo-detector calibration. Laser Phys. Lett. 3, 115–123 (2006)

    Article  ADS  Google Scholar 

  24. S. Buckley, K. Rivoire, J. Vučković, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012)

    Article  ADS  Google Scholar 

  25. M. Felle, J. Huwer, R.M. Stevenson, J. Skiba-Szymanska, M.B. Ward, I. Farrer, R.V. Penty, D.A. Ritchie, A.J. Shields, Interference with a quantum dot single-photon source and a laser at telecom wavelength. Appl. Phys. Lett. 107, 131106 (2015)

    Article  ADS  Google Scholar 

  26. D. Fattal, K. Inoue, J. VuCkovic, C. Santori, G.S. Solomon, Y. Yamamoto, Entanglement formation and violation of Bell’s Inequality with a semiconductor single photon source. Phys. Rev. Lett. 92, 37903 (2004)

    Article  ADS  Google Scholar 

  27. M.J. Stevens, Photon statistics, measurements, and measurements tools, in Single-Photon Generation and Detection: Physics and Applications, ed. by A. Migdall, S.V. Polyakov, J. Fan, J.C. Bienfang (Academic Press, 2013), pp. 25–68

    Google Scholar 

  28. R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  29. R.H. Brown, R.Q. Twiss, Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)

    Article  ADS  Google Scholar 

  30. R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Ehrenberg, R. Rigler, Rotational Brownian motion and fluorescence intensify fluctuations. Chem. Phys. 4, 390–401 (1974)

    Article  Google Scholar 

  32. H.J. Carmichael, D.F. Walls, A quantum-mechanical master equation treatment of the dynamical Stark effect. J. Phys. B: At. Mol. Phys. 9, 1199 (1976)

    Article  ADS  Google Scholar 

  33. H.J. Kimble, L. Mandel, Theory of resonance fluorescence. Phys. Rev. A 13, 2123–2144 (1976)

    Article  ADS  Google Scholar 

  34. C. Cohen-Tannoudji, Atoms in strong resonance fields, in Frontiers in Laser Spectroscopy, Les Houches Summer School Proceedings, Session XXVII, July 1975, ed. by R. Balian, S. Haroche, S. Liberman (North-Holland, Amsterdam, 1977), pp. 1–104

    Google Scholar 

  35. H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)

    Article  ADS  Google Scholar 

  36. H.J. Kimble, M. Dagenais, L. Mandel, Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence. Phys. Rev. A 18, 201–207 (1978)

    Article  ADS  Google Scholar 

  37. M. Dagenais, L. Mandel, Investigation of two-time correlations in photon emissions from a single atom. Phys. Rev. A 18, 2217–2228 (1978)

    Article  ADS  Google Scholar 

  38. J.D. Cresser, J. Häger, G. Leuchs, M. Rateike, H. Walther, Resonance fluorescence of atoms in strong monochromatic laser fields, in Dissipative Systems in Quantum Optics, ed. by P.R. Bonifacio (Springer, Berlin, Heidelberg, 1982), pp. 21–59

    Chapter  Google Scholar 

  39. P. Kask, P. Piksarv, Ü. Mets, Fluorescence correlation spectroscopy in the nanosecond time range: photon antibunching in dye fluorescence. Eur. Biophys. J. 12, 163–166 (1985)

    Article  Google Scholar 

  40. Ü. Mets, Antibunching and rotational diffusion in FCS, in Fluorescence Correlation Spectroscopy, Theory and Applications, vol. 65, Chemical Physics, ed. by R. Rigler, E.S. Elson (Springer, Berlin, Heidelberg, 2001), pp. 346–359

    Chapter  Google Scholar 

  41. J.C. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland, Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986)

    Article  ADS  Google Scholar 

  42. F. Diedrich, H. Walther, Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987)

    Article  ADS  Google Scholar 

  43. W.E. Moerner, L. Kador, Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989)

    Article  ADS  Google Scholar 

  44. M. Orrit, J. Bernard, Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990)

    Article  ADS  Google Scholar 

  45. E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993)

    Article  ADS  Google Scholar 

  46. T. Basché, W.E. Moerner, M. Orrit, H. Talon, Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992)

    Article  ADS  Google Scholar 

  47. F. De Martini, G. Di Giuseppe, M. Marrocco, Single-Mode Generation of quantum photon states by excited single molecules in a microcavity trap. Phys. Rev. Lett. 76, 900–903 (1996)

    Article  ADS  Google Scholar 

  48. W. Patrick Ambrose, P.M. Goodwin, J. Enderlein, D.J. Semin, J.C. Martin, R.A. Keller, Fluorescence photon antibunching from single molecules on a surface. Chem. Phys. Lett. 269, 365–370 (1997)

    Article  ADS  Google Scholar 

  49. S.C. Kitson, P. Jonsson, J.G. Rarity, P.R. Tapster, Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity. Phys. Rev. A 58, 620 (1998)

    Article  ADS  Google Scholar 

  50. C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722 (1999)

    Article  ADS  MATH  Google Scholar 

  51. B. Lounis, W.E. Moerner, Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000)

    Article  ADS  Google Scholar 

  52. L. Fleury, J.M. Segura, G. Zumofen, B. Hecht, U.P. Wild, Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000)

    Article  ADS  Google Scholar 

  53. F. Treussart, A. Clouqueur, C. Grossman, J.-F. Roch, Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film. Opt. Lett. 26, 1504–1506 (2001)

    Article  ADS  Google Scholar 

  54. F. Vargas, O. Hollricher, O. Marti, G. de Schaetzen, G. Tarrach, Influence of protective layers on the blinking of fluorescent single molecules observed by confocal microscopy and scanning near field optical microscopy. J. Chem. Phys. 117, 866–871 (2002)

    Article  ADS  Google Scholar 

  55. L.A. Deschenes, D.A.V. Bout, Single-molecule studies of heterogeneous dynamics in polymer melts near the glass transition. Science 292, 255–258 (2001)

    Article  ADS  Google Scholar 

  56. S.G. Lukishova, A.W. Schmid, A.J. McNamara, R.W. Boyd, C.R. Stroud, Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host. IEEE J Sel. Top. Quant Electron. 9, 1512–1518 (2003)

    Google Scholar 

  57. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290 (2000)

    Article  ADS  Google Scholar 

  58. R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000)

    Article  ADS  Google Scholar 

  59. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, P. Grangier, Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64, 61802 (2001)

    Article  ADS  Google Scholar 

  60. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)

    Article  ADS  Google Scholar 

  61. P. Michler, A. Imamoğlu, M.D. Mason, P.J. Carson, G.F. Strouse, S.K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)

    Article  ADS  Google Scholar 

  62. B. Lounis, H.A. Bechtel, D. Gerion, P. Alivisatos, W.E. Moerner, Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett. 329, 399–404 (2000)

    Article  ADS  Google Scholar 

  63. G. Messin, J.P. Hermier, E. Giacobino, P. Desbiolles, M. Dahan, Bunching and antibunching in the fluorescence of semiconductor nanocrystals. Opt. Lett. 26, 1891–1893 (2001)

    Article  ADS  Google Scholar 

  64. J. Kim, O. Benson, H. Kan, Y. Yamamoto, A single-photon turnstile device. Nature 397, 500–503 (1999)

    Article  ADS  Google Scholar 

  65. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  ADS  Google Scholar 

  66. E. Moreau, I. Robert, J.M. Gerard, I. Abram, L. Manin, V. Thierry-Mieg, Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001)

    Article  ADS  Google Scholar 

  67. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001)

    Article  ADS  Google Scholar 

  68. Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Electrically driven single-photon source. Science 295, 102–105 (2002)

    Article  ADS  Google Scholar 

  69. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 71101 (2011)

    Article  Google Scholar 

  70. Y. Yamamoto, C. Santori, G. Solomon, J. Vuckovic, D. Fattal, E. Waks, E. Diamanti, Single photons for quantum information systems. Prog. Inform. 5 (2005)

    Google Scholar 

  71. P. Yao, V.S.C. Manga Rao, S. Hughes, On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photonics Rev. 4, 499–516 (2010)

    Article  ADS  Google Scholar 

  72. S. Hughes: Single-photon sources: dream and reality, in Single-Photon Generation and Detection: Physics and Applications, A. Migdall, S.V. Polyakov, J. Fan, J.C. Bienfang (Academic Press, 2013)

    Google Scholar 

  73. B. Lounis, M. Orrit, Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005)

    Article  ADS  Google Scholar 

  74. K.O. Greulich, E. Thiel, Single photon light sources. Single Mol. 2, 5–12 (2001)

    Article  ADS  Google Scholar 

  75. M. Oxborrow, A.G. Sinclair, Single-photon sources. Contemp. Phys. 46, 173–206 (2005)

    Article  ADS  Google Scholar 

  76. A. Kuhn, D. Ljunggren, Cavity-based single-photon sources. Contemp. Phys. 51, 289–313 (2010)

    Article  ADS  Google Scholar 

  77. S. Scheel, Single-photon sources—an introduction. J. Mod. Opt. 56, 141 (2009)

    Article  ADS  MATH  Google Scholar 

  78. M. De Vittorio, F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, A. Bramati, R. Cingolani, Recent advances on single photon sources based on single colloidal nanocrystals. Opto-Electron. Rev. 18, 1–9 (2010)

    Article  Google Scholar 

  79. L.J. Bissell, Experimental realization of efficient, room temperature single-photon sources with definite circular and linear polarizations. Ph.D. thesis, University of Rochester, Rochester, NY (2011)

    Google Scholar 

  80. S.G. Lukishova, Single photon sources for secure quantum communication, in Proceedings SPIE 9065, paper 90650C (2013)

    Google Scholar 

  81. K.S. Grußmayer, D.-P. Herten, Photon antibunching in single molecule fluorescence spectroscopy, in Advanced Photon Counting. Springer Series on Fluorescence, ed. by P. Kapusta, M. Wahl, R. Erdmann, vol. 15 (Springer International Publishing, 2014), pp. 159–190

    Google Scholar 

  82. P. Grangier, B. Sanders, J. Vuckovic (eds): Focus on single photons on demand. New J. Phys. 6, (2004)

    Google Scholar 

  83. C.J. Chunnilall, I.P. Degiovanni, S. Kück, I. Müller, A.G. Sinclair, Metrology of single-photon sources and detectors: a review. Opt. Eng. 53, 081910–081910 (2014)

    Article  ADS  Google Scholar 

  84. G.S. Buller, R.J. Collins, Single-photon generation and detection. Meas. Sci. Technol. 21, 12002 (2010)

    Article  ADS  Google Scholar 

  85. E. Neu, C. Becher, Diamond-based single-photon sources and their application in quantum key distribution, in Quantum Information Processing with Diamond: Principles and Applications, ed. by S. Prawer, I. Aharonovich (Elsevier, 2014)

    Google Scholar 

  86. C. Santori, D. Fattal, Y. Yamamoto, Single-Photon Devices and Applications (Wiley, 2010)

    Google Scholar 

  87. P. Michler, Single Semiconductor Quantum Dots (Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  88. A. Migdall, S. Polyakov, J. Fan, J. Bienfang, Single-Photon Generation and Detection: Physics and Applications, (Academic Press, 2013)

    Google Scholar 

  89. E.M. Purcell, Spontaneous emission at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  90. L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006)

    Google Scholar 

  91. A.F. Koenderink, On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208 (2010)

    Article  ADS  Google Scholar 

  92. A. Aspect, P. Grangier, The first single-photon sources, in Single-Photon Generation and Detection, ed. by A. Migdall, S.V. Polyakov, J. Fan, J.C. Bienfang (Elsevier, 2013), pp. 315–350

    Google Scholar 

  93. S.A. Castelletto, R.E. Scholten, Heralded single photon sources: a route towards quantum communication technology and photon standards. Eur. Phys. J.—Appl. Phys. 41, 181–194 (2008)

    Article  ADS  Google Scholar 

  94. H. Huang, A. Dorn, V. Bulovic, M.G. Bawendi, Electrically driven light emission from single colloidal quantum dots at room temperature. Appl. Phys. Lett. 90, 23110–23113 (2007)

    Article  Google Scholar 

  95. S. Brovelli, W.K. Bae, C. Galland, U. Giovanella, F. Meinardi, V.I. Klimov, Dual-color electroluminescence from dot-in-bulk nanocrystals. Nano Lett. 14, 486–494 (2014)

    Article  ADS  Google Scholar 

  96. W.K. Bae, Y.-S. Park, J. Lim, D. Lee, L.A. Padilha, H. McDaniel, I. Robel, C. Lee, J.M. Pietryga, V.I. Klimov, Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013)

    Article  Google Scholar 

  97. B.N. Pal, I. Robel, A. Mohite, R. Laocharoensuk, D.J. Werder, V.I. Klimov, High-sensitivity p–n junction photodiodes based on PbS nanocrystal quantum dots. Adv. Funct. Mater. 22, 1741–1748 (2012)

    Article  Google Scholar 

  98. B.N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V.I. Klimov, J.A. Hollingsworth, H. Htoon, “Giant” CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano Lett. 12, 331–336 (2012)

    Article  ADS  Google Scholar 

  99. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, Electrically driven single-photon source at room temperature in diamond. Nat. Photonics 6, 299–303 (2012)

    Article  ADS  Google Scholar 

  100. J. Forneris, P. Traina, D.G. Monticone, G. Amato, L. Boarino, G. Brida, I.P. Degiovanni, E. Enrico, E. Moreva, V. Grilj, N. Skukan, M. Jakšić, M. Genovese, P. Olivero, Electrical stimulation of non-classical photon emission from diamond color centers by means of sub-superficial graphitic electrodes. Sci. Rep. 5, 15901 (2015)

    Google Scholar 

  101. M. Nothaft, S. Höhla, F. Jelezko, N. Frühauf, J. Pflaum, J. Wrachtrup, Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 3, 628 (2012)

    Article  ADS  Google Scholar 

  102. J.I. Gonzalez, T.-H. Lee, M.D. Barnes, Y. Antoku, R.M. Dickson, Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature. Phys. Rev. Lett. 93, 147402 (2004)

    Article  ADS  Google Scholar 

  103. V.I. Klimov, Nanocrystal Quantum Dots, 2nd edn. (CRC Press, 2010)

    Google Scholar 

  104. A.L. Rogach (ed.), Semiconductor Nanocrystal Quantum Dots (Springer, Vienna, 2008)

    Google Scholar 

  105. J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126, 11752–11753 (2004)

    Article  Google Scholar 

  106. H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, J. Silcox, Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2, 1321–1324 (2002)

    Article  ADS  Google Scholar 

  107. J. Heo, T. Zhu, C. Zhang, J. Xu, P. Bhattacharya, Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots. Opt. Lett. 35, 547–549 (2010)

    Article  ADS  Google Scholar 

  108. S.G. Lukishova, L.J. Bissell, V.M. Menon, N. Valappil, M.A. Hahn, C.M. Evans, B. Zimmerman, T.D. Krauss, C.R. Stroud, R.W. Boyd, Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources. J. Mod. Opt. 56, 167–174 (2009)

    Article  ADS  Google Scholar 

  109. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, Enhanced spontaneous emission at 1.55 µm from colloidal PbSe quantum dots in a Si photonic crystal microcavity. Appl. Phys. Lett. 90, 171105–3 (2007)

    Article  ADS  Google Scholar 

  110. J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, P. Bhattacharya, Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities. Appl. Phys. Lett. 92, 261110 (2008)

    Article  ADS  Google Scholar 

  111. M.T. Rakher, R. Bose, C.W. Wong, K. Srinivasan, Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide. Appl. Phys. Lett. 96, 161108 (2010)

    Article  ADS  Google Scholar 

  112. A.G. Pattantyus-Abraham, H. Qiao, J. Shan, K.A. Abel, T.-S. Wang, F.C.J.M. van Veggel, J.F. Young, Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities. Nano Lett. 9, 2849–2854 (2009)

    Article  ADS  Google Scholar 

  113. C.A. Foell, E. Schelew, H. Qiao, K.A. Abel, S. Hughes, F.C.J.M. van Veggel, J.F. Young, Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits. Opt. Express 20, 10453–10469 (2012)

    Article  ADS  Google Scholar 

  114. Y. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A. Hollingsworth, “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008)

    Article  Google Scholar 

  115. O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, M.G. Bawendi, Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013)

    Article  ADS  Google Scholar 

  116. A.M. Keller, Y. Ghosh, M.S. DeVore, M.E. Phipps, M.H. Stewart, B.S. Wilson, D.S. Lidke, J.A. Hollingsworth, J.H. Werner, 3-Dimensional tracking of non-blinking “giant” quantum dots in live cells. Adv. Funct. Mater. 24, 4796–4803 (2014)

    Article  Google Scholar 

  117. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, B. Dubertret, Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008)

    Article  ADS  Google Scholar 

  118. F. García-Santamaría, Y. Chen, J. Vela, R.D. Schaller, J.A. Hollingsworth, V.I. Klimov, Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009)

    Article  ADS  Google Scholar 

  119. M. Manceau, S. Vezzoli, Q. Glorieux, F. Pisanello, E. Giacobino, L. Carbone, M. De Vittorio, A. Bramati, Effect of charging on CdSe/CdS dot-in-rods single-photon emission. Phys. Rev. B. 90, 35311 (2014)

    Article  ADS  Google Scholar 

  120. F. Pisanello, G. Leménager, L. Martiradonna, L. Carbone, S. Vezzoli, P. Desfonds, P.D. Cozzoli, J.-P. Hermier, E. Giacobino, R. Cingolani, M. De Vittorio, A. Bramati, Non-blinking single-photon generation with anisotropic colloidal nanocrystals: towards room-temperature, efficient, colloidal quantum sources. Adv. Mater. 25, 1974–1980 (2013)

    Article  Google Scholar 

  121. F. Pisanello, L. Martiradonna, G. Leménager, P. Spinicelli, A. Fiore, L. Manna, J.-P. Hermier, R. Cingolani, E. Giacobino, M. De Vittorio, A. Bramati, Room temperature-dipolelike single photon source with a colloidal dot-in-rod. Appl. Phys. Lett. 96, 33101 (2010)

    Article  Google Scholar 

  122. T. Du, J. Schneider, A.K. Srivastava, A.S. Susha, V.G. Chigrinov, H.S. Kwok, A.L. Rogach, Combination of photoinduced alignment and self-assembly to realize polarized emission from ordered semiconductor nanorods. ACS Nano 9, 11049–11055 (2015)

    Article  Google Scholar 

  123. A.M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer Science & Business Media, 2001)

    Google Scholar 

  124. R. Mildren, J. Rabeau, Optical Engineering of Diamond (Wiley, 2013)

    Google Scholar 

  125. S. Prawer, I. Aharonovich, Quantum Information Processing with Diamond: Principles and Applications (Elsevier, 2014)

    Google Scholar 

  126. I. Aharonovich, A.D. Greentree, S. Prawer, Diamond photonics. Nat. Photonics 5, 397–405 (2011)

    Article  ADS  Google Scholar 

  127. I. Aharonovich, S. Castelletto, D.A. Simpson, C.-H. Su, A.D. Greentree, S. Prawer, Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 76501 (2011)

    Article  Google Scholar 

  128. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997)

    Article  Google Scholar 

  129. B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, J. Wrachtrup, Engineering single photon emitters by ion implantation in diamond. Appl. Phys. Lett. 95, 181109 (2009)

    Article  ADS  Google Scholar 

  130. A.T. Collins, M.F. Thomaz, M.I.B. Jorge, Luminescence decay time of the 1.945 eV centre in type Ib diamond. J. Phys. C Solid State Phys. 16, 2177 (1983)

    Article  ADS  Google Scholar 

  131. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.P. Poizat, P. Grangier, Room temperature stable single-photon source. Eur. Phys. J.—At. Mol. Opt. Plasma Phys. 18, 191–196 (2002)

    Google Scholar 

  132. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, R. Hanson, Two-photon quantum interference from separate nitrogen vacancy centers in diamond. Phys. Rev. Lett. 108, 43604 (2012)

    Article  ADS  Google Scholar 

  133. A. Mohtashami, A.F. Koenderink, Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments. New J. Phys. 15, 43017 (2013)

    Article  Google Scholar 

  134. J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, H.-C. Chang, Nonblinking green emission from single H3 color centers in nanodiamonds. Appl. Phys. Lett. 98, 193116 (2011)

    Article  ADS  Google Scholar 

  135. D.A. Simpson, E. Ampem-Lassen, B.C. Gibson, S. Trpkovski, F.M. Hossain, S.T. Huntington, A.D. Greentree, L.C.L. Hollenberg, S. Prawer, A highly efficient two level diamond based single photon source. Appl. Phys. Lett. 94, 203107–203107-3 (2009)

    Article  ADS  Google Scholar 

  136. J.M. Smith, F. Grazioso, B.R. Patton, P.R. Dolan, M.L. Markham, D.J. Twitchen, Optical properties of a single-colour centre in diamond with a green zero-phonon line. New J. Phys. 13, 45005 (2011)

    Article  Google Scholar 

  137. C. Wang, C. Kurtsiefer, H. Weinfurter, B. Burchard, Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006)

    Article  ADS  Google Scholar 

  138. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 25012 (2011)

    Article  Google Scholar 

  139. E. Neu, M. Agio, C. Becher, Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Opt. Express 20, 19956–19971 (2012)

    Article  ADS  Google Scholar 

  140. E. Neu, M. Fischer, S. Gsell, M. Schreck, C. Becher, Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium. Phys. Rev. B 84, 205211 (2011)

    Article  ADS  Google Scholar 

  141. I. Aharonovich, S. Castelletto, B.C. Johnson, J.C. McCallum, D.A. Simpson, A.D. Greentree, S. Prawer, Chromium single-photon emitters in diamond fabricated by ion implantation. Phys. Rev. B 81, 121201 (2010)

    Article  ADS  Google Scholar 

  142. I. Aharonovich, S. Castelletto, D.A. Simpson, A. Stacey, J. McCallum, A.D. Greentree, S. Prawer, Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9, 3191–3195 (2009)

    Article  ADS  Google Scholar 

  143. S. Castelletto, A. Boretti, Radiative and nonradiative decay rates in chromium-related centers in nanodiamonds. Opt. Lett. 36, 4224–4226 (2011)

    Article  ADS  Google Scholar 

  144. D. Steinmetz, E. Neu, J. Meijer, W. Bolse, C. Becher, Single photon emitters based on Ni/Si related defects in single crystalline diamond. Appl. Phys. B 102, 451–458 (2011)

    Article  ADS  Google Scholar 

  145. I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A.D. Greentree, F. Treussart, J.-F. Roch, S. Prawer, Enhanced single-photon emission in the near infrared from a diamond color center. Phys. Rev. B 79, 235316 (2009)

    Article  ADS  Google Scholar 

  146. T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, J. Wrachtrup, Stable single-photon source in the near infrared. New J. Phys. 6, 98–98 (2004)

    Article  ADS  Google Scholar 

  147. E. Wu, V. Jacques, H. Zeng, P. Grangier, F. Treussart, J.-F. Roch, Narrow-band single-photon emission in the near infrared for quantum key distribution. Opt. Express 14, 1296–1303 (2006)

    Article  ADS  Google Scholar 

  148. J.R. Rabeau, Y.L. Chin, S. Prawer, F. Jelezko, T. Gaebel, J. Wrachtrup, Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. 86, 131926 (2005)

    Article  ADS  Google Scholar 

  149. E. Wu, J. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, J. Roch, Room temperature triggered single-photon source in the near infrared. New J. Phys. 9 (2007)

    Article  ADS  Google Scholar 

  150. T. Iwasaki, F. Ishibashi, Y. Miyamoto, Y. Doi, S. Kobayashi, T. Miyazaki, K. Tahara, K.D. Jahnke, L.J. Rogers, B. Naydenov, F. Jelezko, S. Yamasaki, S. Nagamachi, T. Inubushi, N. Mizuochi, M. Hatano, Germanium-vacancy single color centers in diamond. Sci. Rep. 5, 12882 (2015)

    Article  ADS  Google Scholar 

  151. H.-Q. Zhao, M. Fujiwara, S. Takeuchi, Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect. Opt. Express 20, 15628 (2012)

    Article  ADS  Google Scholar 

  152. M. Leifgen, T. Schröder, F. Gädeke, R. Riemann, V. Métillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, O. Benson, Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution. New J. Phys. 16, 23021 (2014)

    Article  ADS  Google Scholar 

  153. A.D. Greentree, I. Aharonovich, S. Castelletto, M.W. Doherty, L.P. McGuinness, D.A. Simpson, 21st-century applications of nanodiamonds. Opt. Photonics News 21, 20–25 (2010)

    Article  Google Scholar 

  154. J.R. Rabeau, S.T. Huntington, A.D. Greentree, S. Prawer, Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding. Appl. Phys. Lett. 86, 134104 (2005)

    Article  ADS  Google Scholar 

  155. A.W. Schell, G. Kewes, T. Schröder, J. Wolters, T. Aichele, O. Benson, A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. Rev. Sci. Instrum. 82, 73709 (2011)

    Article  Google Scholar 

  156. T. Schröder, A.W. Schell, G. Kewes, T. Aichele, O. Benson, Fiber-integrated diamond-based single photon source. Nano Lett. 11, 198–202 (2011)

    Article  ADS  Google Scholar 

  157. T. Gaebel, C. Bradac, J. Chen, J.M. Say, L. Brown, P. Hemmer, J.R. Rabeau, Size-reduction of nanodiamonds via air oxidation. Diam. Relat. Mater. 21, 28–32 (2012)

    Article  ADS  Google Scholar 

  158. I.I. Vlasov, A.A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A.V. Fisenko, L.F. Semjonova, J. Biskupek, U. Kaiser, O.I. Lebedev, I. Sildos, P.R. Hemmer, V.I. Konov, A. Gali, J. Wrachtrup, Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2014)

    Article  ADS  Google Scholar 

  159. I.I. Vlasov, O. Shenderova, S. Turner, O.I. Lebedev, A.A. Basov, I. Sildos, M. Rähn, A.A. Shiryaev, G. Van Tendeloo, Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010)

    Article  Google Scholar 

  160. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345–349 (2010)

    Article  ADS  Google Scholar 

  161. A. Wolcott, T. Schiros, M.E. Trusheim, E.H. Chen, D. Nordlund, R.E. Diaz, O. Gaathon, D. Englund, J.S. Owen, Surface structure of aerobically oxidized diamond nanocrystals. J. Phys. Chem. C 118, 26695–26702 (2014)

    Article  Google Scholar 

  162. R. Kumar, M. Nyk, T.Y. Ohulchanskyy, C.A. Flask, P.N. Prasad, Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 19, 853–859 (2009)

    Article  Google Scholar 

  163. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 10, 134–138 (2010)

    Article  ADS  Google Scholar 

  164. S. Schietinger, L.S. de Menezes, B. Lauritzen, O. Benson, Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals. Nano Lett. 9, 2477–2481 (2009)

    Article  ADS  Google Scholar 

  165. S. Schietinger, Investigation, manipulation, and coupling of single nanoscopic and quantum emitters. Ph.D. thesis (Humboldt University, Berlin, 2012). http://edoc.hu-berlin.de/dissertationen/schietinger-stefan-2012-03-01/PDF/schietinger.pdf. Accessed 6 Mar 2016

  166. S. Babu, J.-H. Cho, J.M. Dowding, E. Heckert, C. Komanski, S. Das, J. Colon, C.H. Baker, M. Bass, W.T. Self, S. Seal, Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics. Chem. Commun. 46, 6915–6917 (2010)

    Article  Google Scholar 

  167. R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P.R. Hemmer, J. Wrachtrup, Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012)

    Article  ADS  Google Scholar 

  168. R. Kolesov, K. Xia, R. Reuter, R. Stöhr, P. Siyushev, T. Inal, M. Jamali, J. Wrachtrup, J. Meijer, P.R. Hemmer, Optical detection of single rare-earth species in a crystal. Presented at Photonics West, 2–7 Feb 2013, San Francisco, CA

    Google Scholar 

  169. Y. Ying, Single instance rare-earth quantum computing with single Ce-ion read out. Presented at Laser Physics Workshop, Seminar 7. Quantum Information Science, p. 22, CD (2012)

    Google Scholar 

  170. M. Barnes, A. Mehta, T. Thundat, R. Bhargava, A. Bartko, L. Peyser, R.M. Dickson, Probing single ion luminescence in rare-earth doped nanocrystals. Presented at Laser Applications to Chemical and Environmental Analysis, p. ThA3 (Optical Society of America, 2002)

    Google Scholar 

  171. M.D. Barnes, A. Mehta, T. Thundat, R.N. Bhargava, V. Chhabra, B. Kulkarni, On–off blinking and multiple bright states of single europium ions in Eu3+:Y2O3 nanocrystals. J. Phys. Chem. B. 104, 6099–6102 (2000)

    Article  Google Scholar 

  172. A.P. Bartko, L.A. Peyser, R.M. Dickson, A. Mehta, T. Thundat, R. Bhargava, M.D. Barnes, Observation of dipolar emission patterns from isolated Eu3+:Y2O3 doped nanocrystals: new evidence for single ion luminescence. Chem. Phys. Lett. 358, 459–465 (2002)

    Article  ADS  Google Scholar 

  173. A. Mehta, T. Thundat, M.D. Barnes, V. Chhabra, R. Bhargava, A.P. Bartko, R.M. Dickson, Size-correlated spectroscopy and imaging of rare-earth-doped nanocrystals. Appl. Opt. 42, 2132–2139 (2003)

    Article  ADS  Google Scholar 

  174. E. Eichhammer, T. Utikal, S. Götzinger, V. Sandoghdar, Spectroscopic detection of single Pr3+ ions on the 3H41D2 transition. New J. Phys. 17, 83018 (2015)

    Article  Google Scholar 

  175. C. Yin, M. Rancic, G.G. de Boo, N. Stavrias, J.C. McCallum, M.J. Sellars, S. Rogge, Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013)

    Article  ADS  Google Scholar 

  176. T. Utikal, E. Eichhammer, L. Petersen, A. Renn, S. Götzinger, V. Sandoghdar, Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat. Commun. 5, 3627 (2014)

    Article  ADS  Google Scholar 

  177. P. Siyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A.D. Wieck, R. Kolesov, J. Wrachtrup, Coherent properties of single rare-earth spin qubits. Nat. Commun. 5, 3895 (2014)

    Article  ADS  Google Scholar 

  178. R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, J. Wrachtrup, Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles. Phys. Rev. B. 84, 153413 (2011)

    Article  ADS  Google Scholar 

  179. S.K. Gayen, B.Q. Xie, Y.M. Cheung, Two-photon excitation of the lowest 4f2–4f5d near-ultraviolet transitions in Pr3+:Y3Al5O12. Phys. Rev. B. 45, 20–28 (1992)

    Article  ADS  Google Scholar 

  180. J. Pejchal, M. Nikl, E. Mihokova et al., Pr3+-doped complex oxide single crystal scintillators. J. Phys. D Appl. Phys. 42, 055117 (2009)

    Article  ADS  Google Scholar 

  181. M.J. Weber, Nonradiative decay from 5d states of rare-earths in crystals. Solid State Commun. 12, 741–744 (1973)

    Article  ADS  Google Scholar 

  182. R. Kolesov, K. Xia, R. Reuter, M. Jamali, R. Stöhr, T. Inal, P. Siyushev, J. Wrachtrup, Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state. Phys. Rev. Lett. 111, 120502 (2013)

    Article  ADS  Google Scholar 

  183. R.R. Jacobs, W.F. Krupke, M.J. Weber, Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d-4f rare-earth lasers. Appl. Phys. Lett. 33(5), 410–412 (1978)

    Article  ADS  Google Scholar 

  184. S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima, A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2014)

    Article  ADS  Google Scholar 

  185. F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, G.V. Astakhov, Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015)

    Article  ADS  Google Scholar 

  186. F. Fuchs, V.A. Soltamov, S. Väth, P.G. Baranov, E.N. Mokhov, G.V. Astakhov, V. Dyakonov, Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013)

    Article  ADS  Google Scholar 

  187. A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T.J. Karle, A. Gali, S. Prawer, J.C. McCallum, B.C. Johnson, Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015)

    Article  ADS  Google Scholar 

  188. A. Lohrmann, B.C. Johnson, J.C. McCallum, S. Castelletto, A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017)

    Article  ADS  Google Scholar 

  189. A.J. Morfa, B.C. Gibson, M. Karg, T.J. Karle, A.D. Greentree, P. Mulvaney, S. Tomljenovic-Hanic, Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett. 12, 949–954 (2012)

    Article  ADS  Google Scholar 

  190. S. Choi, B.C. Johnson, S. Castelletto, C. Ton-That, M.R. Phillips, I. Aharonovich, Single photon emission from ZnO nanoparticles. Appl. Phys. Lett. 104, 261101 (2014)

    Article  ADS  Google Scholar 

  191. N.R. Jungwirth, H.-S. Chang, M. Jiang, G.D. Fuchs, Polarization spectroscopy of defect-based single photon sources in ZnO. ACS Nano 10, 1210–1215 (2016)

    Article  Google Scholar 

  192. S. Choi, A.M. Berhane, A. Gentle, C. Ton-That, M.R. Phillips, I. Aharonovich, Electroluminescence from localized defects in zinc oxide: toward electrically driven single photon sources at room temperature. ACS Appl. Mater. Interfaces. 7, 5619–5623 (2015)

    Article  Google Scholar 

  193. X. He, N.F. Hartmann, X. Ma, Y. Kim, R. Ihly, J.L. Blackburn, W. Gao, J. Kono, Y. Yomogida, A. Hirano, T. Tanaka, H. Kataura, H. Htoon, S.K. Doorn, Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 11, 577–582 (2017)

    Article  Google Scholar 

  194. T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich, Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016)

    Article  ADS  Google Scholar 

  195. F.T. Rabouw, N.M.B. Cogan, A.C. Berends, W. van der Stam, D. Vanmaekelbergh, A.F. Koenderink, T.D. Krauss, C. de M. Donega, Non-blinking single-photon emitters in silica. Sci. Rep. 6, 21187 (2016)

    Google Scholar 

  196. J. Wrachtrup, 2D materials: single photons at room temperature. Nat. Nanotechnol. 11, 7–8 (2016)

    Article  ADS  Google Scholar 

  197. I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016)

    Article  ADS  Google Scholar 

  198. O. Benson, Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011)

    Article  ADS  Google Scholar 

  199. X. Brokmann, E. Giacobino, M. Dahan, J.P. Hermier, Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals. Appl. Phys. Lett. 85, 712–714 (2004)

    Article  ADS  Google Scholar 

  200. T. Schröder, F. Gädeke, M.J. Banholzer, O. Benson, Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13, 55017 (2011)

    Article  Google Scholar 

  201. L. Marseglia, J.P. Hadden, A.C. Stanley-Clarke, J.P. Harrison, B. Patton, Y.-L.D. Ho, B. Naydenov, F. Jelezko, J. Meijer, P.R. Dolan, J.M. Smith, J.G. Rarity, J.L. O’Brien, Nanofabricated solid immersion lenses registered to single emitters in diamond. Appl. Phys. Lett. 98, 133107 (2011)

    Article  ADS  Google Scholar 

  202. K.G. Lee, X.W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, S. Götzinger, A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat Photon. 5, 166–169 (2011)

    Article  ADS  Google Scholar 

  203. X.-W. Chen, S. Götzinger, V. Sandoghdar, 99% efficiency in collecting photons from a single emitter. Opt. Lett. 36, 3545–3547 (2011)

    Article  ADS  Google Scholar 

  204. X.-L. Chu, T.J.K. Brenner, X.-W. Chen, Y. Ghosh, J.A. Hollingsworth, V. Sandoghdar, S. Götzinger, Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter. Optica 1, 203–208 (2014)

    Article  Google Scholar 

  205. S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, 2006)

    Google Scholar 

  206. G. Grynberg, A. Aspect, C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, 2010)

    Google Scholar 

  207. P.R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994)

    Google Scholar 

  208. R.K. Chang, A.J. Campillo, Optical Processes in Microcavities (World Scientific, 1996)

    Google Scholar 

  209. H. Yokoyama, K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, 1995)

    Google Scholar 

  210. H. Benisty, J.-M. Gerard, R. Houdre, J. Rarity, C. Weisbuch, Confined Photon Systems: Fundamentals and Applications (Springer, Berlin, Heidelberg, 1999)

    Book  MATH  Google Scholar 

  211. K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  212. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P.M. Petroff, A. Imamoglu, Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005)

    Article  ADS  Google Scholar 

  213. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E.L. Hu, A. Imamoglu, Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

    Article  ADS  Google Scholar 

  214. S. Strauf, F. Jahnke, Single quantum dot nanolaser. Laser Photonics Rev. 5, 607–633 (2011)

    Google Scholar 

  215. S. Noda, M. Fujita, T. Asano, Spontaneous-emission control by photonic crystals and nanocavities. Nat Photonics 1, 449–458 (2007)

    Article  ADS  Google Scholar 

  216. S.G. Lukishova, J.M. Winkler, L.J. Bissell, D. Mihaylova, A.C. Liapis, Z. Shi, D. Goldberg, V.M. Menon, R.W. Boyd, G. Chen, P. Prasad, Room-temperature single-photon sources based on nanocrystal fluorescence in photonic/plasmonic nanostructures, in Proceedings of SPIE, Emerging Technologies in Security and Defense II; and Quantum-Physics-based Information Security III, 9254, paper 9254-05, Oct 2014

    Google Scholar 

  217. A.C. Liapis, B. Gao, M.R. Siddiqui, Z. Shi, R.W. Boyd, On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities. Appl. Phys. Lett. 108, 21105 (2016)

    Article  Google Scholar 

  218. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, M. Galli, Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million. Appl. Phys. Lett. 104, 241101 (2014)

    Article  ADS  Google Scholar 

  219. H.Y. Ryu, M. Notomi, Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity. Opt. Lett. 28, 2390–2392 (2003)

    Article  ADS  Google Scholar 

  220. L. Sanchis, M.J. Cryan, J. Pozo, I.J. Craddock, J.G. Rarity, Ultrahigh Purcell factor in photonic crystal slab microcavities. Phys. Rev. B. 76, 45118 (2007)

    Article  ADS  Google Scholar 

  221. D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler, M. Kamp, A. Forchel, Y. Yamamoto, Photon Antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402–117404 (2007)

    Article  ADS  Google Scholar 

  222. M. Lončar, A. Faraon, Quantum photonic networks in diamond. MRS Bull. 38, 144–148 (2013)

    Article  Google Scholar 

  223. A. Faraon, C. Santori, Z. Huang, V.M. Acosta, R.G. Beausoleil, Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 33604 (2012)

    Article  ADS  Google Scholar 

  224. B.J.M. Hausmann, B.J. Shields, Q. Quan, Y. Chu, N.P. de Leon, R. Evans, M.J. Burek, A.S. Zibrov, M. Markham, D.J. Twitchen, H. Park, M.D. Lukin, M. Loncǎr, Coupling of NV centers to photonic crystal nanobeams in diamond. Nano Lett. 13, 5791–5796 (2013)

    Article  ADS  Google Scholar 

  225. Q. Quan, M. Loncar, Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt. Express 19, 18529–18542 (2011)

    Article  ADS  Google Scholar 

  226. L. Li, T. Schröder, E.H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M.E. Trusheim, M. Lu, J. Mower, M. Cotlet, M.L. Markham, D.J. Twitchen, D. Englund, Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015)

    Article  Google Scholar 

  227. L. Li, E.H. Chen, J. Zheng, S.L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M.L. Markham, D.J. Twitchen, D. Englund, Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett. 15, 1493–1497 (2015)

    Article  ADS  Google Scholar 

  228. L. Li, T. Schröder, E.H. Chen, H. Bakhru, D. Englund, One-dimensional photonic crystal cavities in single-crystal diamond. Photonics Nanostruct.—Fundam. Appl. 15, 130–136 (2015)

    Article  ADS  Google Scholar 

  229. J. Riedrich-Möller, C. Arend, C. Pauly, F. Mücklich, M. Fischer, S. Gsell, M. Schreck, C. Becher, Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 14, 5281–5287 (2014)

    Article  ADS  Google Scholar 

  230. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, C. Becher, One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 7, 69–74 (2012)

    Article  ADS  Google Scholar 

  231. M.J. Burek, N.P. de Leon, B.J. Shields, B.J.M. Hausmann, Y. Chu, Q. Quan, A.S. Zibrov, H. Park, M.D. Lukin, M. Lončar, Free-standing mechanical and photonic nanostructures in single-crystal diamond. Nano Lett. 12, 6084–6089 (2012)

    Article  ADS  Google Scholar 

  232. M.J. Burek, Y. Chu, M.S.Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M.D. Lukin, M. Lončar, High quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014)

    Article  ADS  Google Scholar 

  233. B.J.M. Hausmann, I.B. Bulu, P.B. Deotare, M. McCutcheon, V. Venkataraman, M.L. Markham, D.J. Twitchen, M. Lončar, Integrated high-quality factor optical resonators in diamond. Nano Lett. 13, 1898–1902 (2013)

    Article  ADS  Google Scholar 

  234. C.F. Wang, R. Hanson, D.D. Awschalom, E.L. Hu, T. Feygelson, J. Yang, J.E. Butler, Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91, 201112 (2007)

    Article  ADS  Google Scholar 

  235. T. Zhong, J. Rochman, J.M. Kindem, E. Miyazono, A. Faraon, High quality factor nanophotonic resonators in bulk rare-earth doped crystals. Opt. Express 24, 536–544 (2016)

    Article  ADS  Google Scholar 

  236. T. Zhong, J.M. Kindem, E. Miyazono, A. Faraon, Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals. Nat. Commun. 6, 8206 (2015)

    Article  ADS  Google Scholar 

  237. E. Miyazono, T. Zhong, I. Craiciu, J.M. Kindem, A. Faraon, Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories. Appl. Phys. Lett. 108, 11111 (2016)

    Article  ADS  Google Scholar 

  238. J. Wolters, A.W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, O. Benson, Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010)

    Article  ADS  Google Scholar 

  239. T. van der Sar, J. Hagemeier, W. Pfaff, E.C. Heeres, S.M. Thon, H. Kim, P.M. Petroff, T.H. Oosterkamp, D. Bouwmeester, R. Hanson, Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011)

    Article  ADS  Google Scholar 

  240. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M.D. Lukin, Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010)

    Article  ADS  Google Scholar 

  241. I. Fushman, D. Englund, J. Vučković, Coupling of PbS quantum dots to photonic crystal cavities at room temperature. Appl. Phys. Lett. 87, 241102–241103 (2005)

    Article  ADS  Google Scholar 

  242. R. Bose, X. Yang, R. Chatterjee, J. Gao, C.W. Wong, Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 µm at room temperature. Appl. Phys. Lett. 90, 111117–3 (2007)

    Article  ADS  Google Scholar 

  243. D.F. Dorfner, T. Hürlimann, G. Abstreiter, J.J. Finley, Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots. Appl. Phys. Lett. 91, 233111 (2007)

    Article  ADS  Google Scholar 

  244. C.B. Poitras, M. Lipson, H. Du, M.A. Hahn, T.D. Krauss, Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity. Appl. Phys. Lett. 82, 4032–4034 (2003)

    Article  ADS  Google Scholar 

  245. N. Valappil, M. Luberto, V.M. Menon, I. Zeylikovich, T.K. Gayen, J. Franco, B.B. Das, R.R. Alfano, Solution processed microcavity structures with embedded quantum dots. Photonics Nanostruct—Fundam. Appl. 5, 184–188 (2007)

    Article  ADS  Google Scholar 

  246. D. Goldberg, V.M. Menon, Enhanced amplified spontaneous emission from colloidal quantum dots in all-dielectric monolithic microcavities. Appl. Phys. Lett. 102, 81119–81119-4 (2013)

    Article  ADS  Google Scholar 

  247. S.G. Lukishova, J.M. Winkler, D. Mihaylova, A. Liapis, L.J. Bissell, David Goldberg, V.M. Menon, Z. Shi, R.W. Boyd, G. Chen, P. Prasad, Nanocrystal fluorescence in photonic bandgap microcavities and plasmonic nanoantennas. J. Phys. Conf. Ser. 594, 12005 (2015)

    Google Scholar 

  248. L. Bissell, D. Goldberg, S.G. Lukishova, V.M. Menon, Quantum dot single-photon source in a Bragg reflector microcavity with a defect layer. Presented at Frontiers in Optics 2012/Laser Science XXVIII, p. LTh1I.2, 14–18 Oct, Rochester, NY (2012)

    Google Scholar 

  249. L. Martiradonna, M. De Vittorio, L. Troisi, M.T. Todaro, M. Mazzeo, T. Stomeo, M. Anni, R. Cingolani, G. Gigli, Fabrication of hybrid organic–inorganic vertical microcavities through imprint technology. Microelectron. Eng. 78–79, 593–597 (2005)

    Article  Google Scholar 

  250. L. Martiradonna, L. Carbone, M.D. Giorgi, L. Manna, G. Gigli, R. Cingolani, M.D. Vittorio, High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology. Appl. Phys. Lett. 88, 181108 (2006)

    Article  ADS  Google Scholar 

  251. A. Qualtieri, G. Morello, P. Spinicelli, M.T. Todaro, T. Stomeo, L. Martiradonna, M.D. Giorgi, X. Quelin, S. Buil, A. Bramati, J.P. Hermier, R. Cingolani, M.D. Vittorio, Nonclassical emission from single colloidal nanocrystals in a microcavity: a route towards room temperature single photon sources. New J. Phys. 11, 33025 (2009)

    Article  Google Scholar 

  252. A. Qualtieri, G. Morello, P. Spinicelli, M.T. Todaro, T. Stomeo, L. Martiradonna, M. De Giorni, X. Quélin, S. Buil, A. Bramati, J.P. Hermier, R. Cingolani, M. De Vittorio, Room temperature single-photon sources based on single colloidal nanocrystals in microcavities. Superlattices Microstruct. 47, 187–191 (2010)

    Article  ADS  Google Scholar 

  253. M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Perez-Willard, A. Leitenstorfer, R. Bratschitsch, Colloidal quantum dots in all-dielectric high-Q pillar microcavities. Nano Lett. 7, 2897–2900 (2007)

    Article  ADS  Google Scholar 

  254. T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K.M. Whitaker, D.R. Gamelin, A. Leitenstorfer, R. Bratschitsch, Colloidal ZnO quantum dots in ultraviolet pillar microcavities. Opt. Express 16, 9791–9794 (2008)

    Article  ADS  Google Scholar 

  255. J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, P. Mulvaney, Sol–gel based vertical optical microcavities with quantum dot defect layers. Adv. Funct. Mater. 18, 3772–3779 (2008)

    Article  Google Scholar 

  256. L. Martiradonna, T. Stomeo, M.D. Giorgi, R. Cingolani, M.D. Vittorio, Nanopatterning of colloidal nanocrystals emitters dispersed in a PMMA matrix by e-beam lithography. Microelectron. Eng. 83, 1478–1481 (2006)

    Article  Google Scholar 

  257. L. Martiradonna, T. Stomeo, L. Carbone, G. Morello, A. Salhi, M. De Giorgi, R. Cingolani, M. De Vittorio, Nanopositioning of colloidal nanocrystal emitters by means of photolithography and e-beam lithography. Phys. Status Solidi B 243, 3972–3975 (2006)

    Article  ADS  Google Scholar 

  258. S.G. Lukishova, L.J. Bissell, J. Winkler, C.R. Stroud, Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host. Opt. Lett. 37, 1259–1261 (2012)

    Article  ADS  Google Scholar 

  259. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013)

    Article  ADS  Google Scholar 

  260. H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T.W. Hänsch, D. Hunger, Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond. Phys. Rev. A 88, 53812 (2013)

    Article  ADS  Google Scholar 

  261. R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A.W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, C. Becher, Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Appl. Phys. Lett. 105, 73113 (2014)

    Article  Google Scholar 

  262. S. Johnson, P.R. Dolan, T. Grange, A.A.P. Trichet, G. Hornecker, Y.C. Chen, L. Weng, G.M. Hughes, A.A.R. Watt, A. Auffèves, J.M. Smith, Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond. New J. Phys. 17, 122003 (2015)

    Article  ADS  Google Scholar 

  263. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini, Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 4, 457–482 (2010)

    Article  ADS  Google Scholar 

  264. A.B. Matsko, V.S. Ilchenko, Optical resonators with whispering gallery modes I: basics. IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006)

    Article  ADS  Google Scholar 

  265. A.B. Matsko, V.S. Ilchenko, Optical resonators with whispering gallery modes II: applications. IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006)

    Article  ADS  Google Scholar 

  266. Y.P. Rakovich, J.F. Donegan, Photonic atoms and molecules. Laser Photonics Rev. 4, 179–191 (2010)

    Article  ADS  Google Scholar 

  267. J. Ward, O. Benson, WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 5, 553–570 (2011)

    Article  ADS  Google Scholar 

  268. T.J. Kippenberg, Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities. Ph.D. thesis (California Institute of Technology, Pasadena, CA, 2004)

    Google Scholar 

  269. M.V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, W. Langbein, Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission. Nano Lett. 1, 309–314 (2001)

    Article  ADS  Google Scholar 

  270. S. Schietinger, O. Benson, Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator. J. Phys. B At. Mol. Opt. Phys. 42, 114001 (2009)

    Article  ADS  Google Scholar 

  271. M. Larsson, K.N. Dinyari, H. Wang, Composite optical microcavity of diamond nanopillar and silica microsphere. Nano Lett. 9, 1447–1450 (2009)

    Article  ADS  Google Scholar 

  272. A.W. Schell, Photonic applications and hybrid integration of single nitrogen vacancy centres in nanodiamond. Ph.D thesis (Humboldt University, Berlin, 2014)

    Google Scholar 

  273. M. Gregor, R. Henze, T. Schröder, O. Benson, On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator. Appl. Phys. Lett. 95, 153110 (2009)

    Article  ADS  Google Scholar 

  274. A.W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, O. Benson, Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures. Sci. Rep. 3, 1577 (2013)

    Article  ADS  Google Scholar 

  275. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)

    Google Scholar 

  276. V. Klimov, Nanoplasmonics (CRC Press, 2014)

    Google Scholar 

  277. M. Agio, A. Alù, Optical Antennas (Cambridge University Press, 2013)

    Google Scholar 

  278. P. Bharadwaj, Antenna-coupled photoemission from single quantum emitters. Ph.D. thesis (University of Rochester, Rochester, NY, 2012)

    Google Scholar 

  279. P. Bharadwaj, B. Deutsch, L. Novotny, Optical antennas. Adv. Opt. Photonics 1, 438 (2009)

    Article  ADS  Google Scholar 

  280. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)

    Article  ADS  Google Scholar 

  281. A.E. Krasnok, I.S. Maksymov, A.I. Denisyuk, P.A. Belov, A.E. Miroshnichenko, C.R. Simovski, Yu.S. Kivshar, Optical nanoantennas. Physics-Uspekhi 56(6), 539 (2013)

    Article  ADS  Google Scholar 

  282. B. Hecht, P. Mühlschlegel, J.N. Farahani, H.-J. Eisler, D.W. Pohl, Resonant optical antennas and single emitters, in Tip Enhancement, ed. by S. Kawata, V.M. Shalaev (Elsevier, 2011), pp. 275–307

    Google Scholar 

  283. C. Ciracì, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fernández-Domínguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith, Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012)

    Article  ADS  Google Scholar 

  284. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009)

    Article  ADS  Google Scholar 

  285. G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Ciracì, C. Fang, J. Huang, D.R. Smith, M.H. Mikkelsen, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8, 835–840 (2014)

    Article  ADS  Google Scholar 

  286. T.B. Hoang, G.M. Akselrod, C. Argyropoulos, J. Huang, D.R. Smith, M.H. Mikkelsen, Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6, Article number 7788 (2015)

    Google Scholar 

  287. A. Rose, T.B. Hoang, F. McGuire, J.J. Mock, C. Ciracì, D.R. Smith, M.H. Mikkelsen, Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014)

    Article  ADS  Google Scholar 

  288. T.B. Hoang, G.M. Akselrod, M.H. Mikkelsen, Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016)

    Article  ADS  Google Scholar 

  289. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002–113004 (2006)

    Article  ADS  Google Scholar 

  290. L. Rogobete, F. Kaminski, M. Agio, V. Sandoghdar, Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt. Lett. 32, 1623–1625 (2007)

    Article  ADS  Google Scholar 

  291. M. Agio, Optical antennas as nanoscale resonators. Nanoscale 4, 692–706 (2012)

    Article  ADS  Google Scholar 

  292. M. Barth, N. Nusse, B. Lochel, O. Benson, Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity. Opt. Lett. 34, 1108–1110 (2009)

    Article  ADS  Google Scholar 

  293. T. Junno, K. Deppert, L. Montelius, L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66, 3627–3629 (1995)

    Article  ADS  Google Scholar 

  294. M.S. Anderson, Nearfield surface enhanced spectroscopy using targeted nanoparticle deposition. Appl. Phys. Lett. 92, 123101 (2008)

    Article  ADS  Google Scholar 

  295. J. Wolters, G. Kewes, A.W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, O. Benson, Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities. Phys. Status Solidi B 249, 918–924 (2012)

    Article  ADS  Google Scholar 

  296. D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, Plasmonic antennas, positioning, and coupling of individual quantum systems. Phys. Status Solidi B 249, 666–677 (2012)

    Article  ADS  Google Scholar 

  297. Y. Alaverdyan, N. Vamivakas, J. Barnes, C. Lebouteiller, J. Hare, M. Atatüre, Spectral tunability of a plasmonic antenna with a dielectric nanocrystal. Opt. Express 19, 18175 (2011)

    Article  ADS  Google Scholar 

  298. M.G. Harats, N. Livneh, R. Rapaport, Design, fabrication and characterization of a hybrid metal-dielectric nanoantenna with a single nanocrystal for directional single photon emission. Opt. Mater. Express 7(3), 834–843 (2017)

    Article  ADS  Google Scholar 

  299. N. Livneh, M.G. Harats, D. Istrati, H.S. Eisenberg, R. Rapaport, Highly directional room-temperature single photon device. Nano Lett. 16, 2527–2532 (2016)

    Article  ADS  Google Scholar 

  300. E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, G. von Plessen, D.I. Gittins, K.S. Mayya, F. Caruso, Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B 70, 205424 (2004)

    Article  ADS  Google Scholar 

  301. G.T. Boyd, Z.H. Yu, Y.R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B. 33, 7923–7936 (1986)

    Article  ADS  Google Scholar 

  302. M.R. Beversluis, A. Bouhelier, L. Novotny, Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003)

    Article  ADS  Google Scholar 

  303. Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, N. Gu, Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution. Colloids Surf. Physicochem. Eng. Asp. 278, 33–38 (2006)

    Article  Google Scholar 

  304. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J.C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, B. Hecht, Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1, 150 (2010)

    Article  Google Scholar 

  305. K.J. Russell, T.-L. Liu, S. Cui, E.L. Hu, Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photonics 6, 459–462 (2012)

    Article  ADS  Google Scholar 

  306. K.J. Russell, E.L. Hu, Gap-mode plasmonic nanocavity. Appl. Phys. Lett. 97, 163115 (2010)

    Article  ADS  Google Scholar 

  307. R. Esteban, T.V. Teperik, J.J. Greffet, Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett. 104 (2010)

    Google Scholar 

  308. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, A. Maitre, Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett. 13, 1516–1521 (2013)

    Article  ADS  Google Scholar 

  309. M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, H. Ming, Plasmonic interaction between silver nano-cubes and a silver ground plane studied by surface-enhanced Raman scattering. Plasmonics 6, 515–519 (2011)

    Article  Google Scholar 

  310. J.B. Lassiter, F. McGuire, J.J. Mock, C. Ciracì, R.T. Hill, B.J. Wiley, A. Chilkoti, D.R. Smith, Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 13, 5866–5872 (2013)

    Article  ADS  Google Scholar 

  311. C.T. Yuan, Y.C. Wang, H.W. Cheng, H.S. Wang, M.Y. Kuo, M.H. Shih, J. Tang, Modification of fluorescence properties in single colloidal quantum dots by coupling to plasmonic gap modes. J. Phys. Chem. C 117, 12762–12768 (2013)

    Article  Google Scholar 

  312. S.P. Eliseev, A.G. Vitukhnovsky, D.A. Chubich, N.S. Kurochkin, V.V. Sychev, A.A. Marchenko, Picosecond time of spontaneous emission in plasmonic patch nanoantennas. JETP Lett. 103(2), 82–86 (2016)

    Article  ADS  Google Scholar 

  313. A. Moreau, C. Ciracì, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith, Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012)

    Article  ADS  Google Scholar 

  314. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007)

    Article  ADS  Google Scholar 

  315. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, X. Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930–930 (2008)

    Article  ADS  Google Scholar 

  316. M.A. Noginov, Y.A. Barnakov, G. Zhu, T. Tumkur, H. Li, E.E. Narimanov, Bulk photonic metamaterial with hyperbolic dispersion. Appl. Phys. Lett. 94, 151105 (2009)

    Article  ADS  Google Scholar 

  317. M.A. Noginov, H. Li, Y.A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C.E. Bonner, M. Mayy, Z. Jacob, E.E. Narimanov, Controlling spontaneous emission with metamaterials. Opt. Lett. 35, 1863–1865 (2010)

    Article  ADS  Google Scholar 

  318. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013)

    Article  ADS  Google Scholar 

  319. M.Y. Shalaginov, S. Bogdanov, V.V. Vorobyov, A.S. Lagutchev, A.V. Akimov, A. Boltasseva, V.M. Shalaev, Enhancement of single-photon sources with metamaterials, in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities, ed. by S.A. Malinovskaya, I. Novikova (World Scientific, 2015), pp. 123–148

    Google Scholar 

  320. Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012)

    Article  ADS  Google Scholar 

  321. C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14, 63001 (2012)

    Article  Google Scholar 

  322. J. Kim, V.P. Drachev, Z. Jacob, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20, 8100–8116 (2012)

    Article  ADS  Google Scholar 

  323. Z. Jacob, J.-Y. Kim, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Engineering photonic density of states using metamaterials. Appl. Phys. B 100, 215–218 (2010)

    Article  ADS  Google Scholar 

  324. M.Y. Shalaginov, V.V. Vorobyov, J. Liu, M. Ferrera, A.V. Akimov, A. Lagutchev, A.N. Smolyaninov, V.V. Klimov, J. Irudayaraj, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc)N hyperbolic metamaterial. Laser Photonics Rev. 9, 120–127 (2015)

    Article  ADS  Google Scholar 

  325. G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, A. Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012)

    Article  ADS  Google Scholar 

  326. G.V. Naik, B. Saha, J. Liu, S.M. Saber, E.A. Stach, J.M.K. Irudayaraj, T.D. Sands, V.M. Shalaev, A. Boltasseva, Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl. Acad. Sci. 111, 7546–7551 (2014)

    Article  ADS  Google Scholar 

  327. M.Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A.V. Kildishev, V.M. Shalaev, Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. Appl. Phys. Lett. 102, 173114 (2013)

    Article  ADS  Google Scholar 

  328. H.N.S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336, 205–209 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  329. K.V. Sreekanth, K.H. Krishna, A.D. Luca, G. Strangi, Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Sci. Rep. 4, 6340 (2014)

    Article  Google Scholar 

  330. D. Lu, J.J. Kan, E.E. Fullerton, Z. Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9, 48–53 (2014)

    Article  ADS  Google Scholar 

  331. T. Galfsky, H.N.S. Krishnamoorthy, W. Newman, E.E. Narimanov, Z. Jacob, V.M. Menon, Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction. Optica. 2, 62–65 (2015)

    Article  Google Scholar 

  332. T. Galfsky, J. Gu, E.E. Narimanov, V.M. Menon, Photonic hypercrystals for control of light -matter interactions. PNAS. 114, 5125–5129 (2017)

    Google Scholar 

  333. S.G. Lukishova, A.C. Liapis, L.J. Bissell, G.M. Gehring, R.W. Boyd, Single-photon experiments with liquid crystals for quantum science and quantum engineering applications. Liq. Cryst. Rev. 2, 111–129 (2014)

    Article  Google Scholar 

  334. S.G. Lukishova, R.W. Boyd, C.R. Stroud, Efficient room-temperature source of polarized single photons. http://www.google.com/patents/US7253871 (2007)

  335. S.G. Lukishova, A.W. Schmid, C.M. Supranowitz, N. Lippa, A.J. McNamara, R.W. Boyd, C.R. Stroud, Dye-doped cholesteric-liquid-crystal room-temperature single-photon source. J. Mod. Opt. 51, 1535–1547 (2004)

    Article  ADS  Google Scholar 

  336. S. Lukishova, R. Knox, P. Freivald, A. McNamara, R. Boyd, C. Stroud, A. Schmid, K. Marshall, Single-photon source for quantum information based on single dye molecule fluorescence in liquid crystal host. Mol. Cryst. Liq. Cryst. 454, 1/[403]–14/[416] (2006)

    Google Scholar 

  337. S.G. Lukishova, Bissell, J. Luke, C.R. Stroud, R.W. Boyd, Room temperature single photon sources with definite circular and linear polarizations. Opt. Spectrosc. 108, 417–424 (2010)

    Article  ADS  Google Scholar 

  338. S.G. Lukishova, Liquid crystals under two extremes: (1) high-power laser irradiation, and (2) single-photon level. Mol. Cryst. Liq. Cryst. 559, 127–157 (2012)

    Article  Google Scholar 

  339. S.G. Lukishova, A.W. Schmid, R. Knox, P. Freivald, L.J. Bissell, R.W. Boyd, C.R. Stroud, K.L. Marshall, Room temperature source of single photons of definite polarization. J. Mod. Opt. 54, 417–429 (2007)

    Article  ADS  Google Scholar 

  340. S.G. Lukishova, J.M. Winkler, L.J. Bissell, Quantum dot fluorescence in photonic bandgap glassy cholesteric liquid crystal structures: microcavity resonance under cw-excitation, antibunching and decay time. Mol. Cryst. Liq. Cryst. 595, 98–105 (2014)

    Article  Google Scholar 

  341. L. Pelliser, M. Manceau, C. Lethiec, D. Coursault, S. Vezzoli, G. Leménager, L. Coolen, M. DeVittorio, F. Pisanello, L. Carbone, A. Maitre, A. Bramati, E. Lacaze, Alignment of rod-shaped single-photon emitters driven by line defects in liquid crystals. Adv. Funct. Mater. 25, 1719–1726 (2015)

    Article  Google Scholar 

  342. M. Manceau: Single CdSe/CdS dot-in-rods fluorescence properties. Ph.D. thesis, University of Pierre et Marie Curie, Paris (2014). https://hal.archives-ouvertes.fr/tel-01101939. Accessed 25 June 2016

  343. I.P. Il’chishin, E.A. Tikhonov, V.G. Tishchenko, M.T. Shpak, Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 32, 24–27 (1980)

    ADS  Google Scholar 

  344. V.I. Kopp, B. Fan, H.K.M. Vithana, A.Z. Genack, Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23, 1707–1709 (1998)

    Article  ADS  Google Scholar 

  345. L.M. Blinov, V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1996)

    Google Scholar 

  346. V.G. Chigrinov, V.M. Kozenkov, H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008)

    Google Scholar 

  347. V.G. Chigrinov, Photoaligning and photopatterning—a new challenge in liquid crystal photonics. Crystals. 3, 149–162 (2013)

    Article  Google Scholar 

  348. P. Pieranski, Classroom experiments with chiral liquid crystals, in Chirality in Liquid Crystals, ed. by H.-S. Kitzerow, C. Bahr (Springer, 2001), pp. 28–66

    Google Scholar 

  349. P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, A. Munoz, Photonics and lasing in liquid crystal materials. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 364, 2747–2761 (2006)

    Article  ADS  Google Scholar 

  350. H. Coles, S. Morris, Liquid-crystal lasers. Nat. Photonics 4, 676–685 (2010)

    Article  ADS  Google Scholar 

  351. L.M. Blinov, R. Bartolino (eds.), Liquid Crystal Microlasers (Transworld Research Network, Trivandrum, 2010)

    Google Scholar 

  352. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M.P.D. Santo, M.A. Matranga, Different approaches of employing cholesteric liquid crystals in dye lasers. Mater. Sci. Appl. 2, 116 (2011)

    Google Scholar 

  353. S.K.H. Wei, S.H. Chen, K. Dolgaleva, S.G. Lukishova, R.W. Boyd, Robust organic lasers comprising glassy-cholesteric pentafluorene doped with a red-emitting oligofluorene. Appl. Phys. Lett. 94, 41111–41113 (2009)

    Article  Google Scholar 

  354. K. Dolgaleva, S.K.H. Wei, S.G. Lukishova, S.H. Chen, K. Schwertz, R.W. Boyd, Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye. J. Opt. Soc. Am. B. 25, 1496–1504 (2008)

    Article  ADS  Google Scholar 

  355. T.J. Bunning, F.-H. Kreuzer, Cyclosiloxane-based liquid crystalline materials. Trends Polym Sci. 3, 318–323 (1995)

    Google Scholar 

  356. S.G. Lukishova, A.W. Schmid, Near-field optical microscopy of defects in cholesteric oligomeric liquid crystal films. Mol. Cryst. Liq. Cryst. 454, 15–21 (2006)

    Google Scholar 

  357. J.Y.P. Butter, B.R. Crenshaw, C. Weder, B. Hecht, Single-molecule spectroscopy of uniaxially oriented terrylene in polyethylene. ChemPhysChem 7, 261–265 (2006)

    Article  Google Scholar 

  358. D. Coursault, B. Zappone, A. Coati, A. Boulaoued, L. Pelliser, D. Limagne, N. Boudet, B.H. Ibrahim, A. de Martino, M. Alba, M. Goldmann, Y. Garreau, B. Gallas, E. Lacaze, Self-organized arrays of dislocations in thin smectic liquid crystal films. Soft Matter 12, 678–688 (2016)

    Article  ADS  Google Scholar 

  359. S.G. Lukishova, A.C. Liapis, H. Zhu, E. Hebert, K. Kuyk, S. Choudhary, R.W. Boyd, Z. Wang, L.J. Bissell, Plasmonic nanoantennas with liquid crystals for nanocrystal fluorescence enhancement and polarization selectivity of classical and quantum light sources. Mol. Cryst. Liq. Cryst. 657, 173–183 (2017)

    Article  Google Scholar 

  360. L. Jiang, H. Mundoor, Q. Liu, I.I. Smalyukh, Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons. ACS Nano 10, 7064–7072 (2016)

    Article  Google Scholar 

  361. R.N. Patel, T. Schröder, N. Wan, L. Li, S.L. Mouradian, E.H. Chen, D.R. Englund, Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber. Light: Sci. Appl. 5, e16032 (2016)

    Article  ADS  Google Scholar 

  362. E. Ampem-Lassen, D.A. Simpson, B.C. Gibson, S. Trpkovski, F.M. Hossain, S.T. Huntington, K. Ganesan, L.C.L. Hollenberg, S. Prawer, Nano-manipulation of diamond-based single photon sources. Opt. Express 17, 11287–11293 (2009)

    Article  ADS  Google Scholar 

  363. C. Santori, D. Fattal, J. VuCkovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  ADS  Google Scholar 

  364. T. Legero, T. Wilk, M. Hennrich, G. Rempe, A. Kuhn, Quantum beat of two single photons. Phys. Rev. Lett. 93, 70503 (2004)

    Article  ADS  Google Scholar 

  365. A. Kiraz, M. Ehrl, Th Hellerer, Ö.E. Müstecaplıoğlu, C. Bräuchle, A. Zumbusch, Indistinguishable photons from a single molecule. Phys. Rev. Lett. 94, 223602 (2005)

    Article  ADS  Google Scholar 

  366. R. Lettow, Y.L.A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Götzinger, V. Sandoghdar, Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010)

    Article  ADS  Google Scholar 

  367. E.B. Flagg, A. Muller, S.V. Polyakov, A. Ling, A. Migdall, G.S. Solomon, Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010)

    Article  ADS  Google Scholar 

  368. R.B. Patel, A.J. Bennett, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics 4, 632–635 (2010)

    Article  ADS  Google Scholar 

  369. A. Sipahigil, M.L. Goldman, E. Togan, Y. Chu, M. Markham, D.J. Twitchen, A.S. Zibrov, A. Kubanek, M.D. Lukin, Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 143601 (2012)

    Article  ADS  Google Scholar 

  370. A.V. Kuhlmann, J.H. Prechtel, J. Houel, A. Ludwig, D. Reuter, A.D. Wieck, R.J. Warburton, Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015)

    Article  ADS  Google Scholar 

  371. C. Matthiesen, A.N. Vamivakas, M. Atatüre, Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 93602 (2012)

    Article  ADS  Google Scholar 

  372. C. Matthiesen, M. Geller, C.H.H. Schulte, C. Le Gall, J. Hansom, Z. Li, M. Hugues, E. Clarke, M. Atatüre, Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source. Nat. Commun. 4, 1600 (2013)

    Article  Google Scholar 

  373. O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013)

    Article  ADS  Google Scholar 

  374. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 20401 (2016)

    Article  ADS  Google Scholar 

  375. H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016)

    Article  ADS  Google Scholar 

  376. W.T. Buttler, R.J. Hughes, P.G. Kwiat, S.K. Lamoreaux, G.G. Luther, G.L. Morgan, J.E. Nordholt, C.G. Peterson, C.M. Simmons, Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81, 3283–3286 (1998)

    Article  ADS  MATH  Google Scholar 

  377. X. Shan, X. Sun, J. Luo, Z. Tan, M. Zhan, Free-space quantum key distribution with Rb vapor filters. Appl. Phys. Lett. 89, 191121 (2006)

    Article  ADS  Google Scholar 

  378. D.N. Wolf, Ultra-bright single photon source. PSI—Physical Sciences Inc. http://www.psicorp.com/content/ultra-bright-single-photon-source

  379. N. Sangouard, H. Zbinden, What are single photons good for? J. Mod. Opt. 59, 1458–1464 (2012)

    Article  ADS  Google Scholar 

  380. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  381. N. Gisin, S. Pironio, N. Sangouard, Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 70501 (2010)

    Article  ADS  Google Scholar 

  382. J. Minář, H. de Riedmatten, N. Sangouard, Quantum repeaters based on heralded qubit amplifiers. Phys. Rev. A. 85, 32313 (2012)

    Article  ADS  Google Scholar 

  383. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, N. Gisin, Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  384. T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gérard, P. Senellart, A. Auffèves, Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 114, 193601 (2015)

    Article  ADS  Google Scholar 

  385. S. Wein, N. Lauk, R. Ghobadi, C. Simon, Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities. Phys. Rev. B 97, 205418 (2018)

    Google Scholar 

  386. B. Gurlek, V. Sandoghdar, D. Martín-Cano, Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling. ACS Photonics 5, 456–461 (2018)

    Article  Google Scholar 

  387. H. Siampour, S. Kumar, S.I. Bozhevolnyi, Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission. Nanoscale 9, 17902–17908 (2017)

    Article  Google Scholar 

  388. A. Singh, J.T. Hugall, G. Calbris, N.F. van Hulst, Fiber-based optical nanoantennas for single-molecule imaging and sensing. J. Light. Technol. 33, 2371–2377 (2015)

    Article  ADS  Google Scholar 

  389. X. Wang, G. Venugopal, J. Zeng, Y. Chen, D.H. Lee, N.M. Litchinitser, A.N. Cartwright, Optical fiber metamagnetics. Opt. Express 19, 19813–19821 (2011)

    Article  ADS  Google Scholar 

  390. M.A. Noginov, L. Gu, J. Livenere, G. Zhu, A.K. Pradhan, R. Mundle, M. Bahoura, Y.A. Barnakov, V.A. Podolskiy, Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99, 21101 (2011)

    Article  Google Scholar 

  391. S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-Telecom Quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)

    Article  ADS  Google Scholar 

  392. M.T. Rakher, L. Ma, O. Slattery, X. Tang, K. Srinivasan, Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010)

    Article  ADS  Google Scholar 

  393. S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)

    Article  ADS  Google Scholar 

  394. J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, S. Ramachandran, Intermodal nonlinear mixing with Bessel beams in optical fiber. Optica 2, 14–17 (2015)

    Article  Google Scholar 

  395. G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pas’ko, S.M. Barnett, S. Franke-Arnold, Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004)

    Article  ADS  Google Scholar 

  396. J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  397. S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, A. Zeilinger, Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)

    Article  ADS  Google Scholar 

  398. M. Mirhosseini, O.S. Magaña-Loaiza, M.N. O’Sullivan, B. Rodenburg, M. Malik, M.P.J. Lavery, M.J. Padgett, D.J. Gauthier, R.W. Boyd, High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 33033 (2015)

    Article  MathSciNet  Google Scholar 

  399. H. Choi, D. Zhu, Y. Yoon, D. Englund, Indistinguishable single-photon sources with dissipative emitter coupled to cascaded cavities. arXiv: 1809.01645, September 2018

    Google Scholar 

  400. T. Iwasaki, Y. Miyamoto, T. Taniguchi, P. Siyushev, M.H. Metsch, F. Jelezko, M. Hatano, Tin-vacancy quantum emitters in diamond, Phys. Rev. Lett. 119, 253601 (2017)

    Google Scholar 

  401. S.I. Bogdanov, M.Y. Shalaginov, A.S. Lagutchev, C.-C. Chiang, D. Shah, A.S. Baburin, I.A. Ryzhikov, I.A. Rodionov, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas, Nano Lett. 18, 4837–4844 (2018)

    Article  ADS  Google Scholar 

  402. S. Bogdanov, M.Y. Shalaginov, A. Boltasseva, V.M. Shalaev, Material platforms for integrated quantum photonics. Opt. Mater. Express 7, 111–132 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. G. L. acknowledges support from the US National Science Foundation grants EEC 1343673 and ECC 0420888. L. J. B. was supported by the Office of the Secretary of Defense ARAP QSEP program; and AFOSR, “Single Color Center Engineering”. We also thank the following publishers for permission to reproduce their materials: Nature Publishing Group, Taylor & Francis Group, American Chemical Society, American Physical Society, Optical Society OSA, Elsevier, John Wiley and Sons, Institute of Physics, American Institute of Physics, and Turpion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Svetlana G. Lukishova or Luke J. Bissell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lukishova, S.G., Bissell, L.J. (2019). Nanophotonic Advances for Room-Temperature Single-Photon Sources. In: Boyd, R., Lukishova, S., Zadkov, V. (eds) Quantum Photonics: Pioneering Advances and Emerging Applications. Springer Series in Optical Sciences, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-98402-5_4

Download citation

Publish with us

Policies and ethics