Skip to main content

Cave Communities and Species Interactions

  • Chapter
  • First Online:
Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

Despite subterranean communities being relatively simple, their precise characterization still represents an interesting ecological challenge. This is mostly because, due to the inaccessibility of most subterranean habitats, the spatial boundaries and the species composition of the communities are difficult to define. In this chapter, we describe the general structure and composition of a cave community, keeping in mind different theoretical approaches. We discuss how spatial and temporal turnover occur within most cave biocoenosis, leading to complex species interactions among the resident species. Particular attention is paid to characterizing the ecological niche and the interspecific competition dynamics in cave ecosystems, showing how competition often arises from niche overlaps in species exploiting similar resources and microhabitats. The use of caves as model systems to study basic ecological concepts such as communities, niche, and species interactions has great potential for advancing ecological knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertano P (2012) Cyanobacterial biofilms in monuments and caves. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 317–343

    Chapter  Google Scholar 

  • Bento DDM, Ferreira RL, Prous X et al (2016) Seasonal variations in cave invertebrate communities in the semi-arid Caatinga, Brazil. J Cave Karst Stud 78:61–71

    Google Scholar 

  • Blonder B, Lamanna C, Violle C et al (2014) The n-dimensional hyper-volume. Glob Ecol Biogeogr 23:595–609

    Article  Google Scholar 

  • Bloom T, Binford GA, Esposito L et al (2014) Discovery of two new species of eyeless spiders within a single Hispaniola cave. J Arachnol 42:148–154

    Article  Google Scholar 

  • Bourne JD (1976) Notes préliminaires sur la distribution spatiale du Meta menardi, Triphosa dubitata, Triphosa sabaudiata, Nelima aurantiaca et Culex pipiens au sain d’un écosystéme cavernicole (Grotte de Scierce: Mte. Savoie). Int J Speleol 8:253–267

    Article  Google Scholar 

  • Cardoso P (2012) Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int J Speleol 41:83–94

    Article  Google Scholar 

  • Chapman PRJ (1985) Are the cavernicoles found in Hawaiian lava tubes just visiting? Proc Univ Bristol Spel Soc 17:175–182

    Google Scholar 

  • Chelini MC, Willemart RH, Gnaspini P (2011) Caves as a winter refuge by a Neotropical harvestman (Arachnida, Opiliones). J Insect Behav 24:393–398

    Article  Google Scholar 

  • Christman MC, Culver DC, Madden MK et al (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1441–1452

    Article  Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institute of Washington Publication, Washington, DC

    Book  Google Scholar 

  • Crouau-Roy B, Crouau Y, Source CF (1992) Dynamic and temporal structure of the troglobitic beetle Speonomus hydrophilus (Coleoptera: Bathysciinae). Ecography 15:12–18

    Article  Google Scholar 

  • Culver DC (1973) Competition in spatially heterogeneous systems: an analysis of simple cave communities. Ecology 54:102–110

    Article  Google Scholar 

  • Culver DC (1975) Interaction between competition and predation in cave stream communities. Int J Speleol 7:229–245

    Article  Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  • Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Culver DC, Pipan T (2015) Shifting paradigms of the evolution of cave life. Acta Carsol 44:415–425

    Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17

    Google Scholar 

  • Delay B (1969) Recherches sur le peuplement de la zone de percolation temporaire des massifs karstiques. These Doc., 3éme Cycle, Fac. Sciences, Toulouse

    Google Scholar 

  • Fišer C, Blejec A, Trontelj P (2012) Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biol Lett 8:578–581

    Article  Google Scholar 

  • Fišer C, Luštrik R, Sarbu S et al (2015) Morphological evolution of coexisting amphipod species pairs from sulfidic caves suggests competitive interactions and character displacement, but no environmental filtering and convergence. PLoS One 10:e0123535

    Article  Google Scholar 

  • Gers C (1995) Stratégies alimentaires de coléoptères troglobies du genre Aphaenops (Coleoptera, Trechinae). Mem Biospeol 22:35–45

    Google Scholar 

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481

    Article  Google Scholar 

  • Gleason HA (1926) The structure and development of the plant association. Bull Torrey Bot Club 43:463–481

    Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hutchinson G (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jeannel R (1926) Faune cavernicole de la France, avec une etude des conditions d’existence dans le domaine souterraine. Le Chevalier, Paris

    Google Scholar 

  • Kozel P, Novak T, Klokočovnik V et al (2015) Comparison of overwinterings in two harvestman species (Arachnida: Opiliones) in subterranean habitats. In: Abstracts of the 29th European congress of arachnology, Brno (CZ), 24–28 August 2015

    Google Scholar 

  • Lipovšek S, Novak T, Janžekovič F et al (2016) Malpighian tubule cells in overwintering cave crickets Troglophilus cavicola (Kollar, 1833) and T. neglectus Krauss, 1879 (Rhaphidophoridae, Ensifera). PLoS One 11:e0158598

    Article  Google Scholar 

  • Malard F, Boutin C, Camacho AI et al (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54:756–776

    Article  Google Scholar 

  • Mammola S, Isaia M (2016) The ecological niche of a specialized subterranean spider. Invertebr Biol 135:20–30

    Article  Google Scholar 

  • Mammola S, Isaia M (2017) Spiders in caves. Proc R Soc Biol B 284:20170193

    Article  Google Scholar 

  • Mammola S, Piano E, Giachino PM et al (2015) Seasonal dynamics and micro-climatic preference of two Alpine endemic hypogean beetles. Int J Speleol 44:239–249

    Article  Google Scholar 

  • Mammola S, Giachino PM, Piano E et al (2016a) Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). Sci Nat 103:88

    Article  Google Scholar 

  • Mammola S, Piano E, Isaia M (2016b) Step back! Niche dynamics in cave-dwelling predators. Acta Oecol 75:35–42

    Article  Google Scholar 

  • Moseley M (2009) Size matters: scalar phenomena and a proposal for an ecological definition of ‘cave. J Cave Karst Stud 35:89–94

    Google Scholar 

  • Northup DE, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18:199–222

    Article  CAS  Google Scholar 

  • Novak T, Perc M, Lipovšek S et al (2012) Duality of terrestrial subterranean fauna. Int J Speleol 41:181–188

    Article  Google Scholar 

  • Poulson TL (1977) A tale of two spiders. Cave Research Foundation Annual Report, pp 245–248

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment. Science 165:971–981

    Article  CAS  Google Scholar 

  • Prous X, Ferreira RS, Martins RP (2004) Ecotone delimitation: Epigean-hypogean transition in cave ecosystems. Aust Ecol 29:374–382

    Article  Google Scholar 

  • Prous X, Lopes Ferreira R, Jacobi CM (2015) The entrance as a complex ecotone in a Neotropical cave. Int J Speleol 44:177–189

    Article  Google Scholar 

  • Resende LPA, Bichuette ME (2016) Sharing the space: coexistence among terrestrial predators in Neotropical caves. J Nat Hist 50:2107–2128

    Article  Google Scholar 

  • Ricklefs RE (2006) The unified neutral theory of biodiversity: do the numbers add up? Ecology 87:1424–1423

    Article  Google Scholar 

  • Sendra A, Reboleira ASPS (2012) The world deepest subterranean community – Krubera-Voronja Cave (Western Caucasus). Int J Speleol 41:221–230

    Article  Google Scholar 

  • Sharratt NJ, Picker MD, Samways MJ (2000) The invertebrate fauna of the sandstone caves of the Cape Peninsula (South Africa): patterns of endemism and conservation priorities. Biodivers Conserv 9:107–143

    Article  Google Scholar 

  • Souza-Silva M, Ferreira RL (2016) The first two hotspots of subterranean biodiversity in South America. Subterr Biol 19:1–21

    Article  Google Scholar 

  • Stoch F, Galassi DM (2010) Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653:217–234

    Article  CAS  Google Scholar 

  • Tobin BW, Hutchins BT, Schwartz BF (2013) Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave. Int J Speleol 42:203–214

    Article  Google Scholar 

  • Trajano E, Gallão JE, Bichuette ME (2016) Spots of high diversity of troglobites in Brazil: the challenge of measuring subterranean diversity. Biodivers Conserv 25:1805–1828

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Zagmajster M, Eme D, Fišer C et al (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Wolfgang Nentwig for providing insightful comments on an early version of the chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mammola, S., Isaia, M. (2018). Cave Communities and Species Interactions. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_11

Download citation

Publish with us

Policies and ethics