Skip to main content

Unstructured High-Dimensional Time-Phase QKD

  • Chapter
  • First Online:
High-Rate, High-Dimensional Quantum Key Distribution Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 435 Accesses

Abstract

Conventional QKD systems require generation and detection of quantum states in two different bases, one of which is used to generate a secret key and the other is used to monitor the presence of an eavesdropper. The quantum states can be prepared in any d-dimensional Hilbert space, which means a two-basis QKD system requires generation and detection of d quantum states in the monitoring basis. Recently, Tamaki et al. (Phys Rev A 90:052314, 2014) showed that, for a qubit-based (d = 2) QKD system, the protocol can be secured by transmitting two states in the information basis and only one state in the monitoring basis, while maintaining the same error tolerance against a general coherent attack as a complete setup. Here, I extend this result beyond d = 2 to a generic family of d-dimensional QKD protocols and show that such a system can be secured by transmitting only one state in the monitoring basis. As examples, I apply these findings to investigate the d = 4 time-phase QKD system demonstrated in Chap. 3 and to a d = 7 QKD system realized using the spatial modes of a photon (Mirhosseini et al., New J Phys 17:033033, 2015), illustrating the applicability of this technique to various QKD schemes (Islam et al., Phys Rev A 97:042347, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The main results of this chapter can be found in Ref. [3].

References

  1. K. Tamaki, M. Curty, G. Kato, H.-K. Lo, K. Azuma, Phys. Rev. A 90, 052314 (2014). http://dx.doi.org/10.1103/PhysRevA.90.052314

    Article  ADS  Google Scholar 

  2. M. Mirhosseini, O.S. Magaa-Loaiza, M.N. OSullivan, B. Rodenburg, M. Malik, M.P.J. Lavery, M.J. Padgett, D.J. Gauthier, R.W. Boyd, New J. Phys. 17, 033033 (2015). http://stacks.iop.org/1367-2630/17/i=3/a=033033

    Article  ADS  MathSciNet  Google Scholar 

  3. N.T. Islam, C.C.W. Lim, C. Cahall, J. Kim, D.J. Gauthier, Phys. Rev. A 97, 042347 (2018). http://dx.doi.org/10.1103/PhysRevA.97.042347

    Article  ADS  Google Scholar 

  4. C.-H.F. Fung, H.-K. Lo, Phys. Rev. A 74, 042342 (2006). http://dx.doi.org/10.1103/PhysRevA.74.042342

    Article  ADS  Google Scholar 

  5. F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, H.-K. Lo, Phys. Rev. A 92, 032305 (2015). http://dx.doi.org/10.1103/PhysRevA.92.032305

    Article  ADS  Google Scholar 

  6. Z. Tang, K. Wei, O. Bedroya, L. Qian, H.-K. Lo, Phys. Rev. A 93, 042308 (2016). http://dx.doi.org/10.1103/PhysRevA.93.042308

    Article  ADS  Google Scholar 

  7. D. Bunandar, A. Lentine, C. Lee, H. Cai, C.M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F.N.C. Wong, R. Camacho, P. Davids, J. Urayama, D. Englund, Phys. Rev. X 8, 021009 ( 2018). http://dx.doi.org/10.1103/PhysRevX.8.021009

    Google Scholar 

  8. F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirinet al., Nat. Photonics 7, 210 (2013)

    Google Scholar 

  9. B. Qi, C.-H.F. Fung, H.-K. Lo, X. Ma, Quantum Inf. Comput. 7, 73 (2007)

    MathSciNet  Google Scholar 

  10. T. Brougham, S.M. Barnett, K.T. McCusker, P.G. Kwiat, D.J. Gauthier, J. Phys. B 46, 104010 (2013). http://stacks.iop.org/0953-4075/46/i=10/a=104010

    Article  ADS  Google Scholar 

  11. T. Brougham, C.F. Wildfeuer, S.M. Barnett, D.J. Gauthier, Eur. Phys. J. D 70, 214 (2016). http://dx.doi.org/10.1140/epjd/e2016-70357-4

    Article  ADS  Google Scholar 

  12. N.T. Islam, C. Cahall, A. Aragoneses, A. Lezama, J. Kim, D.J. Gauthier, Phys. Rev. Appl. 7, 044010 (2017). http://dx.doi.org/10.1103/PhysRevApplied.7.044010

    Article  ADS  Google Scholar 

  13. J. Leach, E. Bolduc, D.J. Gauthier, R.W. Boyd, Phys. Rev. A 85, 060304 (2012). http://dx.doi.org/10.1103/PhysRevA.85.060304

    Article  ADS  Google Scholar 

  14. C. Lee, D. Bunandar, Z. Zhang, G.R. Steinbrecher, P.B. Dixon, F.N.C. Wong, J.H. Shapiro, S.A. Hamilton, D. Englund, High-rate field demonstration of large-alphabet quantum key distribution (2016). arXiv:1611.01139

  15. N.T. Islam, C.C.W. Lim, C. Cahall, J. Kim, D.J. Gauthier, Sci. Adv. 3 (2017). http://dx.doi.org/10.1126/sciadv.1701491. http://advances.sciencemag.org/content/3/11/e1701491.full.pdf

    Article  ADS  Google Scholar 

  16. P.J. Coles, E.M. Metodiev, N. Lütkenhaus, Nat. comm. 7, 11712 (2016)

    Google Scholar 

  17. K.T. Goh, J.-D. Bancal, V. Scarani, New J. Phys. 18, 045022 (2016)

    Article  Google Scholar 

  18. V. Scarani, H. Bechmann-Pasquinucci, N.J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, Rev. Mod. Phys. 81, 1301 ( 2009). http://dx.doi.org/10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  19. M. Koashi, New J. Phy. 11, 045018 (2009). http://stacks.iop.org/1367-2630/11/i=4/a=045018

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Sheridan, V. Scarani, Phys. Rev. A 82, 030301 (2010). http://dx.doi.org/10.1103/PhysRevA.82.030301

    Article  ADS  Google Scholar 

  21. B. Korzh, C.C.W. Lim, R. Houlmann, N. Gisin, M.J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, Nat. Photonics 9, 163 ( 2015). http://dx.doi.org/10.1038/nphoton.2014.327

    Article  ADS  Google Scholar 

  22. M. Lucamarini, K.A. Patel, J.F. Dynes, B. Fröhlich, A.W. Sharpe, A.R. Dixon, Z.L. Yuan, R.V. Penty, A.J. Shields, Opt. Express 21, 24550 (2013). http://dx.doi.org/10.1364/OE.21.024550

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, N.T. (2018). Unstructured High-Dimensional Time-Phase QKD. In: High-Rate, High-Dimensional Quantum Key Distribution Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-98929-7_4

Download citation

Publish with us

Policies and ethics