Skip to main content

The Radiopharmaceutical Chemistry of the Radioisotopes of Lutetium and Yttrium

  • Chapter
  • First Online:
Radiopharmaceutical Chemistry

Abstract

When harnessing radiometals for medical applications, both the aqueous chemistry of the metal ion (e.g. its coordination number, Lewis acidity, solvent activation, pKa) and the properties of the chelator (e.g. donor atoms, denticity, charge, polarity) should be carefully considered to ensure the stable in vivo sequestration of the radionuclide. The decay properties of the radiometal—including its radioactive half-life as well as the type, yield, and energy of its emissions—must also be matched to the biomolecular vector as well as the intended medical application. The most medically relevant radionuclides of lutetium and yttrium are lutetium-177 ([177Lu]Lu3+), yttrium-86 ([86Y]Y3+), and yttrium-90 ([90Y]Y3+). In this chapter, we will discuss the radioactive properties of these nuclides as well as their fundamental coordination chemistry. In addition, we will address the most effective chelators for each radiometal, the biological factors relating to their use in medicine, prominent examples of 177Lu- and 86/90Y-labeled radiopharmaceuticals, potential pitfalls in their use, and tips for radiolabeling with these radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearson RG. Hard and soft acids and bases, HSAB, part I: fundamental principles. J Chem Educ. 1968;45(9):581.

    CAS  Google Scholar 

  2. Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976;A32(5):751–67.

    CAS  Google Scholar 

  3. Barnum DW. Hydrolysis of cations. Formation constants and standard free energies of formation of hydroxy complexes. Inorg Chem. 1983;22(16):2297–305.

    CAS  Google Scholar 

  4. Liu S. The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem Soc Rev. 2004;33(7):445–61.

    CAS  PubMed  Google Scholar 

  5. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260–90.

    CAS  PubMed  Google Scholar 

  6. Baes CF, Mesmer RE. The thermodynamics of cation hydrolysis. Am J Sci. 1981;281(7):935–62.

    CAS  Google Scholar 

  7. Baes CF Jr, Mesmer RE. The hydrolysis of cations. New York: Wiley-Interscience; 1976.

    Google Scholar 

  8. Martell AE, Smith RM. Critical stability constants. Vol. 3: other organic ligands. New York: Plenum Press; 1977.

    Google Scholar 

  9. Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imaging. 2010;9(1):1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Walrand S, Jamar F, Mathieu I, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging. 2003;30(3):354–61.

    CAS  PubMed  Google Scholar 

  11. Lederer CM, Shirley VS. Table of isotopes. 7th ed. New York: Wiley; 1978.

    Google Scholar 

  12. Walrand S, Flux G, Konijnenberg M, Valkema R, Krenning E, Lhommel R, et al. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol Imaging. 2011;38(1):57–68.

    CAS  Google Scholar 

  13. Nayak TK, Garmestani K, Milenic DE, Baidoo KE, Brechbiel MW. HER1-targeted 86Y-panitumumab possesses superior targeting characteristics than 86Y-cetuximab for PET imaging of human malignant mesothelioma tumors xenografts. PLoS One. 2011;6(3):e18198.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Palm S, Enmon RM, Matei C, Kolbert KS, Xu S, Zanzonico PB, et al. Pharmacokinetics and biodistribution of 86Y-trastuzumab for 90Y dosimetry in an ovarian carcinoma model: correlative microPET and MRI. J Nucl Med. 2003;44(7):1148–55.

    CAS  PubMed  Google Scholar 

  15. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med. 1993;34(12):2222–6.

    CAS  PubMed  Google Scholar 

  16. Forrer F, Waldherr C, Maecke HR, Mueller-Brand J. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors. Anticancer Res. 2006;26(1B):703–7.

    CAS  PubMed  Google Scholar 

  17. Volkert WA, Goeckeler WF, Ehrhardt GJ, Ketring AR. Therapeutic radionuclides: production and decay property considerations. J Nucl Med. 1991;32(1):174–85.

    CAS  PubMed  Google Scholar 

  18. Baum RP, Kluge AW, Kulkarni H, Schorr-Neufing U, Niepsch K, Bitterlich N, et al. [(177)Lu-DOTA](0)-D-Phe(1)-Tyr(3)-octreotide ((177)Lu-DOTATOC) for peptide receptor radiotherapy in patients with advanced neuroendocrine tumours: a Phase-II study. Theranostics. 2016;6(4):501–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sadeghi M, Aboudzadeh M, Zali A, Mirzaii M, Bolourinovin F. Radiochemical studies relevant to 86Y production via 86Sr(p,n)86Y for PET imaging. Appl Radiat Isot. 2009;67(1):7–10.

    CAS  PubMed  Google Scholar 

  20. Reischl G, Rösch F, Machulla HJ. Electrochemical separation and purification of yttrium-86. Radiochim Acta. 2002;90(4):225–8.

    CAS  Google Scholar 

  21. Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJG, et al. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon Small-Animal PET Scanner. J Nucl Med. 2010;51(4):610–7.

    PubMed  Google Scholar 

  22. Jødal L, Loirec CL, Champion C. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring. Phys Med Biol. 2012;57(12):3931.

    PubMed  Google Scholar 

  23. Sadeghi M, Aboudzadeh M, Zali A, Zeinali B. 86Y production via 86Sr(p,n) for PET imaging at a cyclotron. Appl Radiat Isot. 2009;67(7):1392–6.

    CAS  PubMed  Google Scholar 

  24. Jødal L, Loirec CL, Champion C. Positron range in PET imaging: non-conventional isotopes. Phys Med Biol. 2014;59(23):7419–34.

    PubMed  Google Scholar 

  25. Lubberink M, Herzog H. Quantitative imaging of 124I and 86Y with PET. Eur J Nucl Med Mol Imaging. 2011;38(1):10–8.

    PubMed Central  Google Scholar 

  26. Rösch F, Herzog H, Qaim S. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals. 2017;10(2):56.

    PubMed Central  Google Scholar 

  27. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3(1):8.

    PubMed  PubMed Central  Google Scholar 

  28. Dash A, Pillai MRA, Knapp FF. Production of (177)Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015;49(2):85–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Baum RP, Kulkarni HR. Theranostics: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy – the Bad Berka experience. Theranostics. 2012;2(5):437–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Altai M, Membreno R, Cook B, Tolmachev V, Zeglis B. Pretargeted imaging and therapy. J Nucl Med. 2017;58(10):1553–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Förster GJ, Engelbach MJ, Brockmann JJ, Reber HJ, Buchholz HG, Mäcke HR, et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of 86Y-DOTATOC and 111In-DTPA-octreotide. Eur J Nucl Med. 2001;28(12):1743–50.

    PubMed  Google Scholar 

  32. Harris WR, Pecoraro VL. Thermodynamic binding constants for gallium transferrin. Biochemistry. 1983;22(2):292–9.

    CAS  PubMed  Google Scholar 

  33. Harris WR, Chen Y. Difference ultraviolet spectroscopic studies on the binding of lanthanides to human serum transferrin. Inorg Chem. 1992;31(24):5001–6.

    CAS  Google Scholar 

  34. Harris WR, Yang B, Abdollahi S, Hamada Y. Steric restrictions on the binding of large metal ions to serum transferrin. J Inorg Biochem. 1999;76(3–4):231–42.

    CAS  PubMed  Google Scholar 

  35. Harris WR. Binding and transport of nonferrous metals by serum transferrin. In: Clarke MJ, editor. Less common metals in proteins and nucleic acid probes. Structure and bonding, vol. 92. Berlin/Heidelberg: Springer; 1998. p. 121–62.

    Google Scholar 

  36. Sun H, Li H, Sadler PJ. Transferrin as a metal ion mediator. Chem Rev. 1999;99(9):2817–42.

    CAS  PubMed  Google Scholar 

  37. Sun H, Cox M, Li H, Sadler P. Rationalisation of metal binding to transferrin: prediction of metal-protein stability constants. In: Hill H, Sadler P, Thomson A, editors. Metal sites in proteins and models. Structure and bonding, vol. 88. Berlin/Heidelberg: Springer; 1997. p. 71–102.

    Google Scholar 

  38. Li H, Sadler PJ, Sun H. Rationalization of the strength of metal binding to human serum transferrin. Eur J Biochem. 1996;242(2):387–93.

    CAS  PubMed  Google Scholar 

  39. Ando A, Ando I, Hiraki T, Hisada K. Relation between the location of elements in the periodic table and various organ-uptake rates. Int J Rad Appl Instrum B. 1989;16(1):57–80.

    CAS  PubMed  Google Scholar 

  40. Wang L, Shi J, Kim Y-S, Zhai S, Jia B, Zhao H, et al. Improving tumor-targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG4 linkers. Mol Pharm. 2009;6(1):231–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hancock RD. Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands and macrocycles. J Chem Educ. 1992;69(8):615–21.

    CAS  Google Scholar 

  42. Camera L, Kinuya S, Garmestani K, Wu C, Brechbiel MW, Pai LH, et al. Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. J Nucl Med. 1994;35(5):882–9.

    CAS  PubMed  Google Scholar 

  43. Harrison A, Walker CA, Parker D, Jankowski KJ, Cox JPL, Craig AS, et al. The in vivo release of 90Y from cyclic and acyclic ligand-antibody conjugates. Int J Rad Appl Instrum B. 1991;18(5):469–76.

    CAS  PubMed  Google Scholar 

  44. Price EW, Carnazza KE, Carlin SD, Cho A, Edwards KJ, Sevak KK, et al. 89Zr-DFO-AMG102 immuno-PET to determine local HGF protein levels in tumors for enhanced patient selection. J Nucl Med. 2017;58(9):1386–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Price EW, Edwards KJ, Carnazza KE, Carlin SD, Zeglis BM, Adam MJ, et al. A comparative evaluation of the chelators H4octapa and CHX-A″-DTPA with the therapeutic radiometal 90Y. Nucl Med Biol. 2016;43(9):566–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Price EW, Cawthray JF, Adam MJ, Orvig C. Modular syntheses of H4octapa and H2dedpa, and yttrium coordination chemistry relevant to 86Y/90Y radiopharmaceuticals. Dalton Trans. 2014;43(19):7176–90.

    CAS  PubMed  Google Scholar 

  47. Price EW, Zeglis BM, Cawthray JF, Lewis JS, Adam MJ, Orvig C. What a difference a carbon makes: H4octapa vs. H4C3octapa, ligands for In-111 and Lu-177 radiochemistry. Inorg Chem. 2014;53(19):10412–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Price EW, Zeglis BM, Cawthray JF, Ramogida CF, Ramos N, Lewis JS, et al. H4octapa-trastuzumab: versatile acyclic chelate system for 111In and 177Lu imaging and therapy. J Am Chem Soc. 2013;135(34):12707–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang CS, Chen Y, Lee H, Liu D, Sun X, Kweon J, et al. Synthesis and evaluation of a new bifunctional NETA chelate for molecular targeted radiotherapy using90Y or177Lu. Nucl Med Biol. 2015;42(3):242–9.

    CAS  PubMed  Google Scholar 

  50. McMurry TJ, Brechbiel M, Kumar K, Gansow OA. Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjug Chem. 1992;3(2):108–17.

    CAS  PubMed  Google Scholar 

  51. Wu C, Kobayashi H, Sun B, Yoo TM, Paik CH, Gansow OA, et al. Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorg Med Chem. 1997;5(10):1925–34.

    CAS  PubMed  Google Scholar 

  52. Hohloch K, Zinzani PL, Linkesch W, Jurczak W, Deptala A, Lorsbach M, et al. Radioimmunotherapy with 90Y-ibritumomab tiuxetan is a safe and efficient treatment for patients with B-cell lymphoma relapsed after auto-SCT: an analysis of the international RIT-Network. Bone Marrow Transplant. 2010;46(6):901–3.

    PubMed  Google Scholar 

  53. Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Esteban J, Simpson D, et al. Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inorg Chem. 1986;25(16):2772–81.

    CAS  Google Scholar 

  54. Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46(1 suppl):92S–8S.

    CAS  PubMed  Google Scholar 

  55. Kunikowska J, Pawlak D, Bąk MI, Kos-Kudła B, Mikołajczak R, Królicki L. Long-term results and tolerability of tandem peptide receptor radionuclide therapy with 90Y/177Lu-DOTATATE in neuroendocrine tumors with respect to the primary location: a 10-year study. Ann Nucl Med. 2017;31(5):347–56.

    CAS  PubMed  Google Scholar 

  56. Schneider DW, Heitner T, Alicke B, Light DR, McLean K, Satozawa N, et al. In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med. 2009;50(3):435–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rösch F, Herzog H, Stolz B, Brockmann J, Köhle M, Mühlensiepen H, et al. Uptake kinetics of the somatostatin receptor ligand [86Y]DOTA-d Phe1-Tyr3-octreotide ([86Y]SMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue. Eur J Nucl Med Mol Imaging. 1999;26(4):358–66.

    Google Scholar 

  58. Salako QA, O’Donnell RT, DeNardo SJ. Effects of Radiolysis on Yttrium-90-Labeled Lym-1 Antibody Preparations. J Nucl Med. 1998;39(4):667–70.

    CAS  PubMed  Google Scholar 

  59. Barone R, Walrand S, Konijnenberg M, Valkema R, Kvols LK, Krenning EP, et al. Therapy using labelled somatostatin analogues: comparison of the absorbed doses with 111In-DTPA-D-Phe1-octreotide and yttrium-labelled DOTA-D-Phe1-Tyr3-octreotide. Nucl Med Commun. 2008;29(3):283–90.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khozeimeh Sarbisheh, E., Price, E.W. (2019). The Radiopharmaceutical Chemistry of the Radioisotopes of Lutetium and Yttrium. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics