Skip to main content

Information Erasure

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Abstract

Information is central to thermodynamics, providing the grounds to the formulation of the theory in powerful abstract statistical terms. One must not forget, however, that, as put by Landauer, information is physical. This means that the processing of information will be unavoidably linked to the costs of manipulating the real physical systems carrying the information. Here we will focus on the particular process of erasing information, which plays a fundamental role in the description of heat engines. We will review Landauer’s principle and the associated erasure energy cost. We will also show, following the recent contributions from Vaccaro and Barnett, that cost of erasing does not need to be paid with energy, but with any other conserved quantity. Finally, we will address the issue of designing heat engines based on these new concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Maxwell states in his book [1]: “This is only one of the instances in which conclusions which we have drawn from our experience of bodies consisting of an immense number of molecules may be found not to be applicable to the more delicate observations and experiments which we may suppose made by one who can perceive and handle the individual molecules.”

  2. 2.

    In practical terms, the fact that the probability \(p_1\) reduces exponentially with E, means the work process may be halted at a finite value of the gap for a correspondingly small probability of error.

  3. 3.

    We use subscripted labels M and R to distinguish quantities associated with the memory and reservoir, respectively, when confusion might otherwise arise.

  4. 4.

    For brevity, we ignore irrelevant phase factors when writing down states of the memory and reservoir.

  5. 5.

    The fixed point condition is not satisfied exactly, however, it can be approached with small error, in principle.

References

  1. J.C. Maxwell, Theory of Heat (Longmans, Green and Co., 1902). https://openlibrary.org/books/OL7243600M

  2. H. Leff, A. Rex (eds.), Maxwell’s Demon: Entropy, Information, Computing Chronological Bibliography, p. 290 (Princeton University Press, Boston, 1990)

    Google Scholar 

  3. H. Leff, A. Rex, Maxwell’s demon 2: Entropy, Classical and Quantum Information, Computing (Institute of Physics Publishing, London, 2003)

    Google Scholar 

  4. L. Szilard, On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Behavior. Sci. 9, 301–310 (1964) [English translation of Über die Enfropieuerminderung in einem thermodynamischen System bei Eingrifen intelligenter Wesen, Zeitschrift fur Physik, 53, 840–856 (1929)]. https://doi.org/10.1002/bs.3830090402

  5. L. Brillouin, J. Appl. Phys. 24, 1152 (1953). https://doi.org/10.1063/1.1721463

    Article  ADS  Google Scholar 

  6. L. Brillouin, Science and Information Theory (Academic Press, New York, 1965)

    MATH  Google Scholar 

  7. R. Landauer, IBM J. 183 (1961). https://doi.org/10.1147/rd.53.0183

  8. C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982). https://doi.org/10.1007/BF02084158

    Article  Google Scholar 

  9. C.H. Bennett, Sci. Am. (1987). https://doi.org/10.1038/scientificamerican1187-108

  10. E.T. Jaynes, Phys. Rev. 106, 620 (1957). Generalized Statistical Mechanics. https://doi.org/10.1103/PhysRev.106.620

  11. E.T. Jaynes, Phys. Rev. 108, 171 (1957b). https://doi.org/10.1103/PhysRev.108.171

    Article  ADS  MathSciNet  Google Scholar 

  12. J.A. Vaccaro, S.M. Barnett, in Asian Conference on Quantum Information Science, September, Beijing, China, pp. 1–4 (2006), http://aqis-conf.org/archives/aqis06/

  13. J.A. Vaccaro, S.M. Barnett, in Quantum Communication, Measurement and Computing (QCMC), calgary, Canada, 19–24 August 2008. AIP Conference Proceedings, vol. 1110, pp. 37–40 (2008). https://doi.org/10.1063/1.3131353

  14. N. Yunger Halpern, P. Faist, J. Oppenheim, A. Winter, Nat. Commun. 7, 12051 (2016). https://doi.org/10.1038/ncomms12051

    Article  ADS  Google Scholar 

  15. N. Yunger Halpern, J.M. Renes, Phys. Rev. E 93, 022126 (2016). https://doi.org/10.1103/physreve.93.022126

  16. R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, Open Syst. Inf. Dyn. 11, 205 (2004). https://doi.org/10.1023/B:OPSY.0000047566.72717.71

    Article  MathSciNet  Google Scholar 

  17. L. del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61 (2011). https://doi.org/10.1038/nature10123

    Article  Google Scholar 

  18. K. Shizume, Phys. Rev. E 52, 3495 (1995). https://doi.org/10.1103/PhysRevE.52.3495

    Article  ADS  Google Scholar 

  19. B. Piechocinska, Phys. Rev. A 61, 062314 (2000). https://doi.org/10.1103/PhysRevA.61.062314

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Reeb, M.M. Wolf, New J. Phys. 16, 103011 (2014). https://doi.org/10.1088/1367-2630/16/10/103011

    Article  ADS  Google Scholar 

  21. T.J.G. Apollaro, S. Lorenzo, C.D. Franco, F. Plastina, M. Paternostro, Phys. Rev. A 90 (2014). https://doi.org/10.1103/physreva.90.012310

  22. F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. 112, 3275 (2015). https://doi.org/10.1073/pnas.1411728112

  23. R. Landauer, in Proceedings of the Workshop on Physics and Computation PhysComp’92, p. 1 (IEEE Computer Society Press, Los Alamos, 1993). https://doi.org/10.1109/PHYCMP.1992.615478

  24. J.A. Vaccaro, S.M. Barnett, Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 1770 (2011). https://doi.org/10.1098/rspa.2010.0577

    Article  ADS  Google Scholar 

  25. S.M. Barnett, J.A. Vaccaro, Entropy 15, 4956 (2013). https://doi.org/10.3390/e15114956

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Croucher, S. Bedkihal, J.A. Vaccaro, Phys. Rev. Lett. 118, 060602 (2017). https://doi.org/10.1103/physrevlett.118.060602

    Article  ADS  Google Scholar 

  27. J.A. Vaccaro, S.M. Barnett, AIP Conf. Proc. 1110, 37 (2009). https://doi.org/10.1063/1.3131353

  28. M. Lostaglio, D. Jennings, T. Rudolph, 19, 043008. https://doi.org/10.1088/1367-2630/aa617f

  29. J.S.S.T. Wright, T. Gould, A.R.R. Carvalho, S. Bedkihal, J.A. Vaccaro, Phys. Rev. A 97, 052104 (2018). https://doi.org/10.1103/PhysRevA.97.052104

    Article  ADS  Google Scholar 

  30. Y. Guryanova, S. Popescu, A. Short, R. Silva, P. Skrzypczyk, Nat. Commun. 7, 12049 (2016). https://doi.org/10.1038/ncomms12049

    Article  ADS  Google Scholar 

  31. K. Ito, M. Hayashi, Phys. Rev. E 97 (2018). https://doi.org/10.1103/physreve.97.012129

  32. M.N. Bera, A. Riera, M. Lewenstein, A. Winter (2017), arXiv:1707.01750v1

  33. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993). https://doi.org/10.1103/PhysRevLett.71.2401

    Article  ADS  Google Scholar 

  34. D.J. Evans, D.J. Searles, Phys. Rev. E 50, 1645 (1994). https://doi.org/10.1103/PhysRevE.50.1645

    Article  ADS  Google Scholar 

  35. R. Dillenschneider, E. Lutz, Phys. Rev. Lett. 102 (2009). https://doi.org/10.1103/physrevlett.102.210601

  36. C. Jarzynski, Phys. Rev. E 56 (1997). https://doi.org/10.1103/PhysRevE.56.5018

  37. J.L.W.V. Jensen, Acta Math. 30, 175 (1906). https://doi.org/10.1007/BF02418571

    Article  MathSciNet  Google Scholar 

  38. T. Xiong, L. Yan, F. Zhou, K. Rehan, D. Liang, L. Chen, W. Yang, Z. Ma, M. Feng, V. Vedral, Phys. Rev. Lett. 120 (2018). https://doi.org/10.1103/physrevlett.120.010601

  39. A. Berut, A. Petrosyan, S. Ciliberto, Europhys. Lett. 103, 60002 (2013). https://doi.org/10.1209/0295-5075/103/60002

  40. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana Il, 1963)

    MATH  Google Scholar 

  41. A. Eddington, The Nature of the Physical World (J. M. Dent, London, 1928). https://openlibrary.org/books/OL15026629M

  42. B. Schumacher, Quantum Information and Foundations of Thermodynamics (ETH Zürich, 2011), https://www.video.ethz.ch/conferences/2011/qiftw11/f9bb6f3d-7461-4971-8213-2e3ceb48c0ba.html. Accessed 13 Mar 2018

  43. D. Song, E. Winstanley, Int. J. Theor. Phys. 47, 1692 (2007). https://doi.org/10.1007/s10773-007-9610-0

Download references

Acknowledgements

J.A.V. thanks the Australian Research Council (LP140100797) and the Lockheed Martin Corporation for financial support. S.M.B. thanks the Royal Society for support (RP150122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan A. Vaccaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Croucher, T., Wright, J., Carvalho, A.R.R., Barnett, S.M., Vaccaro, J.A. (2018). Information Erasure. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_29

Download citation

Publish with us

Policies and ethics