Skip to main content

Ionospheric Variability

  • Chapter
  • First Online:
Ionospheric Space Weather

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

The focus is on how ionospheric variability with height produces the different regions, which are the dominant features of the plasma medium under normal and extreme conditions over the European zone, during the last few Solar Cycles. Examples are given for months representing ionospheric summer, equinox, and winter conditions during low and high solar activity epochs, revealing significant solar and seasonal dependence, as well as local time dependence from one day to another during quiet geomagnetic conditions. Sudden TEC decreases during the most recent solar eclipses are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Badeke R, Borries C, Hoque MM et al (2018) Empirical forecast of quiet time ionospheric total electron content maps over Europe. Adv Space Res. https://doi.org/10.1016/j.asr.2018.04.010

    Article  Google Scholar 

  • Bilitza D, Altadill D, Zhang Y et al (2014) The International Reference Ionosphere 2012-a model of international collaboration. J Space Weather Space Clim 4(A07). https://doi.org/10.1051/swsc/2014004

    Article  Google Scholar 

  • Bjoland LM, Belyey V, Løvhaug UP et al (2016) An evaluation of International Reference Ionosphere electron density in the polar cap and cusp using EISCAT Svalbard radar measurements. Ann Geophys 34:751–758. https://doi.org/10.5194/angeo-34-751-2016

    Article  Google Scholar 

  • Breed AM, Goodwin GL, Vandenber A-M et al (1997) Ionospheric total electron content and slab thickness determined in Australia. Radio Sci 32:1635–1643

    Article  Google Scholar 

  • Budden KG (1985) The propagation of radio waves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cander LR, Haralambous H (2011) On the importance of total electron content enhancements during the extreme solar minimum. Adv Space Res 47:304–311. https://doi.org/10.1016/j.asr.2010.08.0262010

    Article  Google Scholar 

  • Chen G, Wu C, Huang X et al (2015) Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012. J Geophys Res 120:3009–3020. https://doi.org/10.1002/2014ja020849

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C et al (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81:111–120

    Article  Google Scholar 

  • Davies K (1990) Ionospheric radio. Peter Peregrinus LTD, London

    Book  Google Scholar 

  • Davis MJ, Da Rosa AV (1970) Possible detection of atmospheric gravity waves generated by the solar eclipse. Nature 226:1123

    Article  Google Scholar 

  • Deminova GF (2007) Maps of foF2, hmF2, and plasma frequency above F2-layer peak in the night-time low-latitude ionosphere derived from Intercosmos-19 satellite topside sounding data. Ann Geophys 25:1827–1835

    Article  Google Scholar 

  • Dominici P (1993) Ionosfera. Enciclopedia delle scienze fisiche III:298–312

    Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83:191–198. https://doi.org/10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Forbes JM, Palo SE, Zhang X (2000) Variability of the ionosphere. J Atmos Sol-Terr Phys 62:685–693

    Article  Google Scholar 

  • Hernandez-Pajares M, Juan JM, Sanz J et al (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83:263–275. https://doi.org/10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Hoque MM, Wenzel D, Jakowski N et al (2016) Ionospheric response over Europe during the solar eclipse of March 20, 2015. J Space Weather Space Clim. https://doi.org/10.1051/swsc/2016032

    Article  Google Scholar 

  • Jakowski N, Stankov SM, Wilken V et al (2008) Ionospheric behaviour over Europe during the solar eclipse of 3 October 2005. J Atmos Sol-Terr Phys 70(6):835–946. https://doi.org/10.1016/j.jastp.2007.02.016

    Article  Google Scholar 

  • Johnston HF (1943) Mean K-indices from twenty one magnetic observatories and five quiet and five disturbed days for 1942. Terr Magn Atmos Elec 47:219. https://doi.org/10.1029/te048i004p00219

    Article  Google Scholar 

  • Kersley L, Malan D, Pryse SE et al (2004) Total electron content—a key parameter in propagation: measurement and use in ionospheric imaging. Ann Geofis 47:1067–1091

    Google Scholar 

  • Klobuchar JA (1978) Ionospheric effects on satellite navigation and air traffic control systems. Recent advances in radio and optical propagation for modern communication, navigation, and detection Systems. In: AGARD Proceedings—LS—93. NTIS, Springfield VA. ISBN 92-835-1280-4

    Google Scholar 

  • Knight HK, Galkin IA, Reinisch BW (2018) Auroral ionospheric E region parameters obtained from satellite‐based far ultraviolet and ground‐based ionosonde observations: 1. Data, methods, and comparisons. J Geophys Res 123. https://doi.org/10.1029/2018ja025263

    Google Scholar 

  • Lloyd H (1861) On Earth-currents, and their connection with the diurnal changes of the horizontal magnetic needle. Trans Roy Irish Acad 24:115–141

    Google Scholar 

  • Mendillo M, Rishbeth H, Roble RG et al (2002) Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere. J Atmos Sol-Terr Phys 64:1911–1931

    Article  Google Scholar 

  • Mendillo M, Huang C-L, Pi X et al (2005) The global ionospheric asymmetry in total electron content. J Atmos Solar-Terr Phys 67:1377–1387

    Article  Google Scholar 

  • Mikhailov AV, Depueva AK, Leschinskaya (2004) Morphology of quiet time F2-layer disturbances: high and lower latitudes. Int J Geomag Aeronom 5:1–14. https://doi.org/10.1029/2003gi000058

    Article  Google Scholar 

  • Mikhailov AV, Perrone L, Smirnova N (2012) Two types of positive disturbances in the daytime mid-latitude F2-layer: morphology and formation mechanisms. J Atmos Sol-Terr Phy 81:59–75

    Article  Google Scholar 

  • Misra P, Enge P (2004) Global positioning system: signals, measurements and performance. Ganga-Jamuna Press, Lincoln

    Google Scholar 

  • Pietrella M, Perrone L, Fontana G et al (2009) Oblique-incidence ionospheric soundings over Central Europe and their application for testing now casting and long term prediction models. Adv Space Res. https://doi.org/10.1016/j.asr.2008.09

  • Piggott WR, Rawer K (1972a) U.R.S.I. Handbook of ionogram interpretation and reduction. Report UAG-23. National Oceanic and Atmospheric Administration, Boulder

    Google Scholar 

  • Piggott WR, Rawer K (1972b) U.R.S.I. Handbook of ionogram interpretation and reduction. Report UAG-23A. Second Edition, Revision of Chapters 1–4. National Oceanic and Atmospheric Administration, Boulder

    Google Scholar 

  • Prölss GW (1995) Ionospheric F-region storms. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 2. CRCPress, Boca Raton, pp 195–248

    Google Scholar 

  • Reinisch BW, Galkin IA (2011) Global Ionospheric Radio Observatory (GIRO). Earth Planets Space 63:377–381. https://doi.org/10.5047/eps.2011.03.001

    Article  Google Scholar 

  • Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Elsevier, New York

    Google Scholar 

  • Rishbeth H, Mendillo M (2001) Patterns of F2-layer variability. J Atmos Sol-Terr Phys 63:1661–1680

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Dissertation, Astronomical Institute University of Berne

    Google Scholar 

  • Shi S, Yang G, Jiang G et al (2017) Wuhan ionospheric oblique backscattering sounding system and its applications—A review. Sensors. https://doi.org/10.3390/s17061430

    Article  Google Scholar 

  • Stankov SM, Bergeot N, Berghmans D et al (2017) Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J Space Weather Space Clim. https://doi.org/10.1051/swsc/2017017

    Article  Google Scholar 

  • Titheridge JE (1985) Ionogram analysis with the generalized program POLAN. Rep UAG-93 World Data Center A for Solar Terr Phys, NOAA Environmental Data Service, Asheville

    Google Scholar 

  • Tsai HF, Liu JY (1999) Ionospheric total electron content response to solar eclipses. J Geophys Res 104:12,657–12,668

    Article  Google Scholar 

  • Wang C, Rosen IG, Tsurutani BT et al (2016) Statistical characterization of ionosphere anomalies and their relationship to space weather events. J Space Weather Space Clim 6:A5. https://doi.org/10.1051/swsc/2015046

    Article  Google Scholar 

  • Zhao B, Wan W, Liu L et al (2008) Anomalous enhancement of ionospheric electron content in the Asian-Australian region during a geomagnetically quiet day. J Geophys Res 113:A11302. https://doi.org/10.1029/2007ja012987

    Article  Google Scholar 

  • Zolesi B, Cander LR (2014) Ionospheric prediction and forecasting. Springer, Heidelberg, New York, Dordrecht, London. https://doi.org/10.1007/978-3-642-38430-1, eBook: ISBN 978-3-642-38430-1

    Book  Google Scholar 

Relevant Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana R. Cander .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cander, L.R. (2019). Ionospheric Variability. In: Ionospheric Space Weather. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-99331-7_4

Download citation

Publish with us

Policies and ethics