Skip to main content

Task and Spatial Planning by the Cognitive Agent with Human-Like Knowledge Representation

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11097))

Included in the following conference series:

Abstract

The paper considers the task of simultaneous learning and planning actions for moving a cognitive agent in two-dimensional space. Planning is carried out by an agent who uses an anthropic way of knowledge representation that allows him to build transparent and understood planes, which is especially important in case of human-machine interaction. Learning actions to manipulate objects is carried out through reinforcement learning and demonstrates the possibilities of replenishing the agent’s procedural knowledge. The presented approach was demonstrated in an experiment in the Gazebo simulation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)

    Google Scholar 

  2. Sun, R., Hlie, S.: Psychologically realistic cognitive agents: taking human cognition seriously. J. Exp. Theor. Artif. Intell. 25, 65–92 (2012)

    Article  Google Scholar 

  3. Osipov, G.S., Panov, A.I., Chudova, N.V.: Behavior control as a function of consciousness. I. World model and goal setting. J. Comput. Syst. Sci. Int. 53, 517–529 (2014)

    Article  MathSciNet  Google Scholar 

  4. Osipov, G.S., Panov, A.I., Chudova, N.V.: Behavior control as a function of consciousness. II. Synthesis of a behavior plan. J. Comput. Syst. Sci. Int. 54, 882–896 (2015)

    Article  MathSciNet  Google Scholar 

  5. Panov, A.I.: Behavior planning of intelligent agent with sign world model. Biol. Inspired Cogn. Archit. 19, 21–31 (2017)

    Google Scholar 

  6. Leontyev, A.N.: The Development of Mind. Erythros Press and Media, Kettering (2009)

    Google Scholar 

  7. Vygotsky, L.S.: Thought and Language. MIT Press, Cambridge (1986)

    Google Scholar 

  8. Pospelov, D.A., Osipov, G.S.: Knowledge in semiotic models. In: Proceedings of the Second Workshop on Applied Semiotics, Seventh International Conference on Artificial Intelligence and Information-Control Systems of Robots (AIICSR 1997), Bratislava, pp. 1–12 (1997)

    Google Scholar 

  9. Emelyanov, S., Makarov, D., Panov, A.I., Yakovlev, K.: Multilayer cognitive architecture for UAV control. Cogn. Syst. Res. 39, 58–72 (2016)

    Article  Google Scholar 

  10. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  11. Siagian, C., Itti, L.: Biologically-inspired robotics vision Monte-Carlo localization in the outdoor environment. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1723–1730 (2007)

    Google Scholar 

  12. Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P.: Trust region policy optimization (2015)

    Google Scholar 

  13. Kakade, S.: A natural policy gradient (2002)

    Google Scholar 

  14. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)

    Article  MathSciNet  Google Scholar 

  15. Palacios, J.C., Olayo, M.G., Cruz, G.J., Chvez, J.A.: Thin film composites of polyallylamine-silver. Superficies y Vacio (2012)

    Google Scholar 

  16. Erdem, U.M., Hasselmo, M.E.: A biologically inspired hierarchical goal directed navigation model. J. Physiol. Paris 108(1), 28–37 (2014)

    Article  Google Scholar 

  17. Morris, R.G.M., Garrud, P., Rawlins, J.N.P., O’Keefe, J.: Place navigation impaired in rats with hippocampal lesions. Nature 297(5868), 681–683 (1982)

    Article  Google Scholar 

  18. Steele, R.J., Morris, R.G.M.: Delay-dependent impairment of a matching-to- place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9(2), 118–136 (1999)

    Article  Google Scholar 

  19. Steffenach, H.-A., Witter, M., Moser, M.-B., Moser, E.I.: Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45(2), 301–313 (2005)

    Article  Google Scholar 

  20. Milford, M., Wyeth, G.: Persistent navigation and mapping using a biologically inspired slam system. Int. J. Robot. Res. 29(9), 1131–1153 (2010)

    Article  Google Scholar 

  21. Milford, M., Schulz, R.: Principles of goal-directed spatial robot navigation in biomimetic models. Philos. Trans. R. Soc. B Biol. Sci. 369(1655), 20130484–20130484 (2014)

    Article  Google Scholar 

  22. Epstein, S.L., Aroor, A., Sklar, E.I., Parsons, S.: Navigation with learned spatial affordances, pp. 1–6 (2013)

    Google Scholar 

  23. Epstein, S.L., Aroor, A., Evanusa, M., Sklar, E.I., Parsons, S.: Spatial abstraction for autonomous robot navigation. Cogn. Process. 16, 215–219 (2015)

    Article  Google Scholar 

  24. Kiselev, G.A., Panov, A.I.: Sign-based approach to the task of role distribution in the coalition of cognitive agents. SPIIRAS Proc. 57, 161–187 (2018)

    Article  Google Scholar 

  25. Albers, A., Yan, W., Frietsch, M.: Application of reinforcement learning for a 2-DOF robot arm control, November 2009

    Google Scholar 

  26. Stephen, J., Edward, J.: 3D simulation for robot arm control with deep Q-learning (2016)

    Google Scholar 

  27. Watkins, C.J.C.H.: Learning from delayed rewards (1989)

    Google Scholar 

  28. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy update (2016)

    Google Scholar 

  29. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation (1999)

    Google Scholar 

  30. Osipov, G.S.: Sign-based representation and word model of actor. In: Yager, R., Sgurev, V., Hadjiski, M., and Jotsov, V. (eds.) 2016 IEEE 8th International Conference on Intelligent Systems (IS), pp. 22–26. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

The results concerning models of sign components and planning algorithms (Sects. 4.1 and 4.2) were obtained under the support of the Russian Science Foundation (project No. 16-11-00048), and the results on reinforcement learning for manipulator (Sects. 4.3 and 5) were obtained under the support of the Russian Foundation for Basic Research (project No. 17-29-07079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr I. Panov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aitygulov, E., Kiselev, G., Panov, A.I. (2018). Task and Spatial Planning by the Cognitive Agent with Human-Like Knowledge Representation. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2018. Lecture Notes in Computer Science(), vol 11097. Springer, Cham. https://doi.org/10.1007/978-3-319-99582-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99582-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99581-6

  • Online ISBN: 978-3-319-99582-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics