Skip to main content

A Study of Friction Ridge Distortion Effect on Automated Fingerprint Identification System – Database Evaluation

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2018)

Abstract

Fingerprint identification is an important part of forensic science (e.g. criminal investigations or identity verification). Friction ridge impressions left at the crime scene can be affected by the nonlinear distortion due to elasticity of the skin, pressure changes or finger movement during deposition. These deformations affect relative distances between fingerprint features such as minutiae point, ridge frequency and orientation, which eventually leads to difficulties in establishing a positive match between impressions of the same finger.

In this study we present preliminary results of the impact of fingerprint friction ridge distortion on NBIS Bozorth3 fingerprint matching algorithm. For this purpose special fingerprint database was developed. The database contained 5175 prints obtained from 40 volunteers. Experimental results reveal that the some types of fingerprint distortion (especially movement to right and left) impacts the recognition performance. The results of our studies can be used in future work on statistical friction ridge analysis and fingerprint algorithms robust to distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porwik, P.: The modern techniques of latent fingerprint imaging. In: 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), Krackow, pp. 29–33 (2010)

    Google Scholar 

  2. Hong, L., Wan, Y., Jain, A.K.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)

    Article  Google Scholar 

  3. Doroz, R., Wrobel, K., Porwik, P.: An accurate fingerprint reference point determination method based on curvature estimation of separated ridges. Int. J. Appl. Math. Comput. Sci. 28(1), 209–225 (2018)

    Article  MathSciNet  Google Scholar 

  4. Surmacz, K., Saeed, K., Rapta, P.: An improved algorithm for feature extraction from a fingerprint fuzzy image. Opt. Appl. 43(3), 515–527 (2013)

    Google Scholar 

  5. Maio, D., Maltoni, D.: Direct gray-scale minutiae detection in fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 19(1), 27–40 (1997)

    Article  Google Scholar 

  6. Chen, X., Tian, J., Yang, X., Zhang, Y.: An algorithm for distorted fingerprint matching based on local triangle feature set. IEEE Trans. Inf. Forensics Secur. 1, 169–177 (2006)

    Article  Google Scholar 

  7. Bazen, A., Gerez, S.: Fingerprint matching by thin-plate spline modelling of elastic deformations. Pattern Recogn. 36, 1859–1867 (2003)

    Article  Google Scholar 

  8. Tabassi, E., Wilson, C., Watson, C.: Fingerprint Image Quality. NISTIR 7151 (2004)

    Google Scholar 

  9. Dvornychenko, V.N., Garris, M.D.: Summary of NIST Latent Fingerprint Testing Workshop. NISTIR 7377 (2006)

    Google Scholar 

  10. Si, X., Feng, J., Zhou, J.: Detecting fingerprint distortion from a single image. In: Proceedings IEEE International Workshop Information Forensics Security, pp. 1–6 (2012)

    Google Scholar 

  11. Ratha, N.K., Karu, K., Chen, S., Jain, A.K.: A real-time matching system for large fingerprint databases. IEEE TPAMI 18(8), 799–813 (1996)

    Article  Google Scholar 

  12. Kovacs-Vajna, Z.M.: A fingerprint verification system based on triangular matching and dynamic time warping. IEEE TPAMI 22(11), 1266–1276 (2000)

    Article  Google Scholar 

  13. Ross, A., Shah, S., Shah, J.: Image versus feature mosaicking: a case study in fingerprints. In: Proceedings SPIE, pp. 620208-1– 620208-12 (2006)

    Google Scholar 

  14. Ross, A., Dass, S., Jain, A.K.: A deformable model for fingerprint matching. Pattern Recogn. 38, 95–103 (2005)

    Article  Google Scholar 

  15. Ross, A., Dass, S., Jain, A.K.: Fingerprint warping using ridge curve correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 19–30 (2006)

    Article  Google Scholar 

  16. Cao, K., Yang, X., Tao, X., Li, P., Zang, Y., Tian, J.: Combining features for distorted fingerprint matching. J. Netw. Comput. Appl. 33, 258–267 (2010)

    Article  Google Scholar 

  17. Chen, Y., Dass, D., Ross, A., Jain, A.K.: Fingerprint deformation models using minutiae locations and orientations. In: Proceedings IEEE Workshop on Applications of Computer Vision, pp. 150–155 (2005)

    Google Scholar 

  18. Cappelli, R., Maio, D., Maltoni, D.: Modelling plastic distortion in fingerprint images. In: Singh, S., Murshed, N., Kropatsch, W. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 371–378. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44732-6_38

    Chapter  Google Scholar 

  19. Uz, T., Bebis, G., Erol, A., Prabhakar, S.: Minutiae-based template synthesis and matching for fingerprint authentication. Comput. Vis. Image Underst., 979–992 (2009)

    Google Scholar 

  20. Singh, R., Vatsa, M., Noore, A.: Improving verification accuracy by synthesis of locally enhanced biometric images and deformable model. Sig. Process. 87, 2746–2764 (2007)

    Article  Google Scholar 

  21. Watson, C., Grother, P., Cassasent, D.: Distortion-tolerant filter for elastic-distorted fingerprint matching. In: Proceedings SPIE Optical Pattern Recognition, pp. 166–174 (2000)

    Google Scholar 

  22. Senior, A., Bolle, R.: Improved fingerprint matching by distortion removal. IEICE Trans. Inf. Syst. 84(7), 825–831 (2001)

    Google Scholar 

  23. Dabouei, A., Kazemi, H., Iranmanesh, S.M., Dawson, J., Nasrabadi, N.M.: Fingerprint distortion rectification using deep convolutional neural networks. In: The 11th IAPR International Conference on Biometrics, CoRR abs/1801.01198 (2018)

    Google Scholar 

  24. Watson, C.I.: NIST Special Database 24 Digital Video of Live-Scan Fingerprint Data, U.S. National Institute of Standards and Technology (1998)

    Google Scholar 

  25. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2000: fingerprint verification competition. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 402–412 (2002)

    Article  Google Scholar 

  26. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2002: second fingerprint verification competition. In: Object Recognition Supported by User Interaction for Service Robots, vol. 3, pp. 811–814 (2002)

    Google Scholar 

  27. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2004: third fingerprint verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25948-0_1

    Chapter  Google Scholar 

  28. Gao, Q., Zhang, X.: A study of distortion effects on fingerprint matching. Comput. Sci. Eng. 2(3), 37–42 (2012)

    Article  Google Scholar 

  29. Si, X., Feng, J., Zhou, J., Luo, Y.: Detection and rectification of distorted fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 555–568 (2015)

    Article  Google Scholar 

  30. Ko, K., Salamon, W.J.: NIST Biometric Image Software (NBIS) https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis. Accessed 29 Mar 2018

  31. http://www.neurotechnology.com/fingerprint-scanner-futronic-fs60.html. Accessed 29 Mar 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Więcław .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamera, Ł., Więcław, Ł. (2018). A Study of Friction Ridge Distortion Effect on Automated Fingerprint Identification System – Database Evaluation. In: Saeed, K., Homenda, W. (eds) Computer Information Systems and Industrial Management. CISIM 2018. Lecture Notes in Computer Science(), vol 11127. Springer, Cham. https://doi.org/10.1007/978-3-319-99954-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99954-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99953-1

  • Online ISBN: 978-3-319-99954-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics