Skip to main content

Abstract

In computer networking, the burst ratio is a parameter of the packet loss process, containing information about the tendency of losses to occur in blocks, rather than as separate units. Its value is especially important for real-time multimedia transmissions. In this paper, we report the measurements of the value of this parameter carried out in the networking laboratory. These measurements involved high volumes of traffic, different numbers of flows, different TCP/UDP traffic proportions and different packet sizes. In every case, a high value of the burst ratio was obtained. This is an experimental confirmation of the conjecture that the buffering mechanisms, commonly used in the contemporary networks, make the packet losses to group together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The closest value to 100 divisible by 8. Setting the buffer size to be divisible by 8 is required by many Cisco devices.

References

  1. Abbas, G., Manzoor, S., Hussain, M.: A stateless fairness-driven active queue management scheme for efficient and fair bandwidth allocation in congested Internet routers. Telecommun. Syst. 6, 1–18 (2017)

    Google Scholar 

  2. Arai, M., Chiba, A., Iwasaki, K.: Measurement and modeling of burst packet losses in internet end-to-end communications. In: Proceedings of 1999 Pacific Rim International Symposium on Dependable Computing, pp. 260–267. IEEE (1999)

    Google Scholar 

  3. Benko, P., Veres, A.: A passive method for estimating end-to-end TCP packet loss. In: Global Telecommunications Conference, GLOBECOM 2002, vol. 3, pp. 2609–2613. IEEE (2002)

    Google Scholar 

  4. Bolot, J.C.: End-to-end packet delay and loss behavior in the internet. In: ACM SIGCOMM Computer Communication Review, vol. 23, pp. 289–298. ACM (1993)

    Google Scholar 

  5. Bratiychuk, M., Chydzinski, A.: On the loss process in a batch arrival queue. Appl. Math. Model. 33(9), 3565–3577 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chróst, Ł., Brachman, A., Chydziński, A.: On the performance of AQM algorithms with small buffers. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 168–173. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02671-3_20

    Chapter  Google Scholar 

  7. Chrost, L., Chydzinski, A.: On the deterministic approach to active queue management. Telecommun. Syst. 63(1), 27–44 (2016)

    Article  Google Scholar 

  8. Chydzinski, A.: Queue size in a BMAP queue with finite buffer. In: Koucheryavy, Y., Harju, J., Iversen, V.B. (eds.) NEW2AN 2006. LNCS, vol. 4003, pp. 200–210. Springer, Heidelberg (2006). https://doi.org/10.1007/11759355_20

    Chapter  Google Scholar 

  9. Chydzinski, A., Wojcicki, R., Hryn, G.: On the number of losses in an MMPP queue. In: Koucheryavy, Y., Harju, J., Sayenko, A. (eds.) NEW2AN 2007. LNCS, vol. 4712, pp. 38–48. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74833-5_4

    Chapter  Google Scholar 

  10. CISCO: CISCO 3750X Datasheet. https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-3560-x-series-switches/data_sheet_c78-584733.html. Accessed 01 Feb 2018

  11. Coates, M.J., Nowak, R.D.: Network loss inference using unicast end-to-end measurement. In: ITC Conference on IP Traffic, Modeling and Management, pp. 28–1 (2000)

    Google Scholar 

  12. Crovella, M.E., Bestavros, A.: Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Netw. 5(6), 835–846 (1997)

    Article  Google Scholar 

  13. DPDK: DPDK-Dump application for capturing traffic using DPDK. https://github.com/marty90/DPDK-Dump. Accessed 01 Feb 2018

  14. Duffield, N.G., Presti, F.L., Paxson, V., Towsley, D.: Inferring link loss using striped unicast probes. In: Proceedings of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2001, vol. 2, pp. 915–923. IEEE (2001)

    Google Scholar 

  15. Haßlinger, G., Hohlfeld, O.: The Gilbert-Elliott model for packet loss in real time services on the Internet. In: 2008 14th GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and Communication Systems (MMB), pp. 1–15. VDE (2008)

    Google Scholar 

  16. Jiang, W., Schulzrinne, H.: Modeling of packet loss and delay and their effect on real-time multimedia service quality. In: Proceedings of NOSSDAV 2000. Citeseer (2000)

    Google Scholar 

  17. Khoshnevisan, L., Salmasi, F.R.: A robust and high-performance queue management controller for large round trip time networks. Int. J. Syst. Sci. 47(7), 1586–1597 (2016)

    Article  Google Scholar 

  18. Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch Markovian arrival process. Perform. Eval. 54(2), 149–173 (2003)

    Article  Google Scholar 

  19. Leland, W.E., Willinger, W., Taqqu, M.S., Wilson, D.V.: On the self-similar nature of ethernet traffic. ACM SIGCOMM Comput. Commun. Rev. 25(1), 202–213 (1995)

    Article  Google Scholar 

  20. McGowan, J.W.: Burst ratio: a measure of bursty loss on packet-based networks (2005). US Patent 6,931,017

    Google Scholar 

  21. Pan, R., Natarajan, P., Baker, F., White, G.: Proportional integral controller enhanced (PIE): a lightweight control scheme to address the bufferbloat problem. Technical report (2017)

    Google Scholar 

  22. Poorzare, R., Jamali, S., Poorzare, A.: Maximum burst size adjustment for improving packet delivery ratio in optical burst switching (OBS) networks. Int. J. Innov. Sci. Eng. Technol. 2(5), 823–828 (2015)

    Google Scholar 

  23. Rachwalski, J., Papir, Z.: Analysis of burst ratio in concatenated channels. J. Telecommun. Inf. Technol. 4, 65–73 (2015)

    Google Scholar 

  24. Rachwalski, J., Papir, Z.: Burst ratio in concatenated Markov-based channels. J. Telecommun. Inf. Technol. 2014(1), 3–9 (2014)

    Google Scholar 

  25. Salvador, P., Pacheco, A., Valadas, R.: Modeling IP traffic: joint characterization of packet arrivals and packet sizes using bmaps. Comput. Netw. 44(3), 335–352 (2004)

    Article  Google Scholar 

  26. Sommers, J., Barford, P., Duffield, N., Ron, A.: Improving accuracy in end-to-end packet loss measurement. In: ACM SIGCOMM Computer Communication Review, vol. 35, pp. 157–168. ACM (2005)

    Google Scholar 

  27. Spirent: MX2-10G-s12 load module. https://www.spirent.com/-/media/Datasheets/Broadband/PAB/SpirentTestCenter/Spirent_mX2_40-10_GbE_Dual-Speed_Test_Module_datasheet.pdf?la=en. Accessed 01 Feb 2018

  28. Spirent: Spirent. https://www.spirent.com/. Accessed 01 Feb 2018

  29. Sqlite: Sqlite database. https://www.sqlite.org/. Accessed 01 Feb 2018

  30. Sreenath, N.: Evaluating the burst delivery ratio of TCP variants with varying burst sizes and offset times in an all-optical burst switching network. Int. J. Comput. Appl. 67(10), 9–12 (2013)

    Google Scholar 

  31. Wang, P., Zhu, D., Lu, X.: Active queue management algorithm based on data driven predictive control. Telecommun. Syst. 64, 1–9 (2017)

    Article  Google Scholar 

  32. Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V.: Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. ACM SIGCOMM Comput. Commun. Rev. 25(4), 100–113 (1995)

    Article  Google Scholar 

  33. Yajnik, M., Moon, S., Kurose, J., Towsley, D.: Measurement and modelling of the temporal dependence in packet loss. In: Proceedings of Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 1999, vol. 1, pp. 345–352. IEEE (1999)

    Google Scholar 

Download references

Acknowledgements

This work was conducted within project 2017/25/B/ST6/00110, founded by National Science Centre, Poland. The infrastructure was supported by PL-LAB2020 project, founded by National Centre for Research and Development, Poland, contract POIG.02.03.01-00-104/13-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Samociuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samociuk, D., Chydzinski, A., Barczyk, M. (2018). Experimental Measurements of the Packet Burst Ratio Parameter. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Facing the Challenges of Data Proliferation and Growing Variety. BDAS 2018. Communications in Computer and Information Science, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-99987-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99987-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99986-9

  • Online ISBN: 978-3-319-99987-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics