Skip to main content

Part of the book series: Methods in Clinical Pharmacology ((MECLPH,volume 6))

  • 16 Accesses

Summary

After reaching sexual maturity, individual members of a species accumulate physiological decrements that lead to an increase in their likelihood of dying. This decline in function is called aging. For man, the likelihood of dying doubles every seven years beyond the age of 30.

The triumphs of modern medicine have not lengthened the human lifespan. Medical successes merely have permitted more people to reach what appears to be a fixed upper age limit. Life expectation has increased but life span has not. In many developed countries, one can now reasonably expect to become old, which is a very new phenomenon.

If the two leading causes of death in developed countries were to be eliminated (cardiovascular diseases and cancer), about 14 years of additional life expectation would occur for all age groups. Resolving all other causes of death would add an additional 2 years of life expectation. Thus if all causes of premature death were to be eliminated, all humans would live to be about 100 years of age. They would then die as the result of normal losses in physiological function which previously increased their vulnerability to an earlier death caused by disease or accidents. The diseases of old age are simply superimposed on the normal physiological decrements that occur after sexual maturation.

Studies on isolated human cells grown in laboratory cultures indicate that normal cells have a limited capacity to divide and to function. They have a chronometer that limits their replicative and functional capacity. Cells grown in culture from older donors have a reduced capacity to divide and function when compared to cells grown from younger donors. Before cells die in culture they reveal several hundred changes, many of which are similar to those changes that occur in the intact older human.

Current evidence leads to the belief that age changes are substantially due to changes that occur in the genetic machinery of individual cells. The changes apparently are induced by the same genetic program that operates throughout the life of the individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bierman, E. L.: The effect of donor age on the in vitro lifespan of cultured human arterial smoothmuscle cells. In Vitro 14, 951–955 (1978).

    Article  CAS  Google Scholar 

  • Cudkowicz, G., Upton, A. C., Shearer, G. M., Hughes, W. L.: Lymphocyte content and proliferative capacity of serially transplanted mouse bone marrow. Nature 201, 165–167 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Danes, B. S.: Progeria: A cell culture study on aging. J. Clin. Invest. 50, 2000–2003 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. W., deOme, K. B., Young, J. T., Blair, P. B., Faulkin, L. J., Jr.: The in vivo lifespan of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proc. Nat. Acad. Sci. U.S.A. 61, 53–60 (1968).

    Article  CAS  Google Scholar 

  • Daniel, C. W., Young, L.J. T.: Influence of cell division on an aging process. Exp. Cell Res. 65, 27–32 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. W.: Finite growth span of mouse mammary gland serially propagated in vivo. Experientia (Basel) 29, 1422–1424 (1973).

    Article  CAS  Google Scholar 

  • Daniel, C. W., Aidells, B. D., Medina, B., Faulkin, L.J., Jr. -. Unlimited division potential of precancerous mouse mammary cells after spontaneous or carcinogen-induced transformation. Fed. Proc. 34, 64–67 (1975).

    PubMed  CAS  Google Scholar 

  • Dell’Orco, R. T., Mertens, J. G., Kruse, P. F., Jr.: Doubling potential, calendar time, and donor age of human diploid cells in culture. Exp. Cell Res. 84, 363–366 (1974).

    Article  PubMed  Google Scholar 

  • Epstein, C.J., Martin, G.M., Schultz, A. L., Motulsky, A. G.: Werner’s syndrome: A review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 45, 177–221 (1966).

    CAS  Google Scholar 

  • Ford, C.E., Micklem, H. S., Gray, S.M.: Evidence of selective proliferation of reticular cell-clones in heavily irradiated mice. Br. J. Radiol. 32, 280 (1959).

    Google Scholar 

  • Goldstein, S.: Lifespan of cultured cells in progeria. Lancet 1, 424 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S.: The biology of aging. N. Engl. J. Med. 285, 1120–1129 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S., Moerman, E. J., Soeldner, J. S., Gleason, R. E., Barnett, D. M.: Chronologic and physiologic age effect replicative lifespan of fibroblasts from diabetics, prediabetics, and normal donors. Science 199, 781–782 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Harley, C.B., Goldstein, S.: Cultured human fibroblasts: Distribution of cell generations and a critical limit. J. Cell Physiol. 97, 509–516 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D. E.: Normal function of transplanted mouse erythrocyte precursors for 21 months beyond donor lifespans. Nature New Biol. 237, 220–222 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D.E.: Normal Production of erythrocytes by mouse marrow continuous for 73 months. Proc. Nat. Acad. Sci. U.S.A. 70, 3184–3188 (1973).

    Article  CAS  Google Scholar 

  • Harrison, D. E.: Normal function of transplanted marrow cell lines from aged mice. J. Gerontol. 30, 279–285 (1975).

    PubMed  CAS  Google Scholar 

  • Harrison, D.E.: Cell and tissue transplantation: a means of studying the aging process. In: C. Finch and E. Schneider (Eds.) Handbook of the Biology of Aging, (pp. 322–356). New York, Van Nostrand Reinhold Co. (1977).

    Google Scholar 

  • Hay, R.J., Strehler, B. L.: The limited growth span of cell strains isolated from the chick embryo. Exp. Gerontol. 2, 123–135 (1967).

    Article  Google Scholar 

  • Hayflick, L., Moorhead, P. S.: The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  Google Scholar 

  • Hayflick, L.: The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L.: Aging under glass. Exp. Gerontol. 5, 291–303 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L.: Cell senescence and cell differentiation in vitro. Vol.4, 1–15. In: H. Bredt and J. W. Rohen (Eds.), Aging and Development, F. K. Schattauer Verlag, Stuttgart, 1972.

    Google Scholar 

  • Hayflick, L.: The biology of human aging. Am. J. Med. Sci. 265, 433–445 (1973).

    Article  Google Scholar 

  • Hayflick, L.: The cell biology of human aging. N. Engl. J. Med. 295, 1302–1308 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L.: The cellular basis for biological aging. In: C. Finch and L. Hayflick (Eds.), Handbook of the Biology of Aging, pp. 159–186. New York: Van Nostrand Reinhold, 1977.

    Google Scholar 

  • Hayflick, L.: Cell Aging. In: C. Eisdorfer (Ed.), Annual Review of Gerontology and Geriatrics, pp. 26–67. New York: Springer, 1980.

    Google Scholar 

  • Hellman, S., Botnick, L. E., Hannon, E. C., Vigneulle, R. M. Proliferative capacity of murine hematopoietic stem cells. Proc. Nat. Acad. Sci. U.S.A. 75, 490–494 (1978).

    Article  CAS  Google Scholar 

  • Krohn, P. L.: Review lectures on senescence. II: Heterochronic transplantation in the study of aging. Proc. R. Soc. Lond. [Biol.] 157, 128–147 (1962).

    Article  CAS  Google Scholar 

  • LeGuilly, Y., Simon, M., Lenoir, P., Bourel, M.: Longterm culture of human adult liver cells: Morphological changes related to in vitro senescence and effect of donor’s age on growth potential. Gerontologia 19, 303–313 (1973).

    Article  CAS  Google Scholar 

  • Lesher, S., Fry, R.J.M., Kohn, H. I.: Age and the generation time of the mouse duodenal epithelial cell. Exp. Cell Res. 24, 334–343 (1961a).

    Article  PubMed  CAS  Google Scholar 

  • Lesher, S., Fry, R.J.M., Kohn, H.I.: Age and the generation cycle of intestinal epithelial cells in the mouse. Gerontologia (Basel) 5, 176–181 (1961b).

    Article  CAS  Google Scholar 

  • Lesher, S., Sacher, G. A.: Effects of age on cell proliferation in mouse duodenal crypts. Exp. Gerontol. 3, 211–217 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.M., Sprague, C. A., Epstein, C.J.: Replicative lifespan of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab. Invest. 23, 86–92 (1970).

    PubMed  CAS  Google Scholar 

  • McHale, J.S., Moulton, M. L., McHale, J. T.: Limited culture lifespan of human diploid cells as a function of metabolic time instead of division potential. Exp. Gerontol. 6, 89–93 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Nienhaus, A. J., Dejong, B., Tenkate, L P.: Fibroblast culture in Werner’s syndrome. Humangenetik 13, 244–246 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Ogura, H., Fujawara, T., Namba, N.: Establishment of two chick embryo fibroblastic cell lines. Gann 75, 410–414 (1984).

    PubMed  CAS  Google Scholar 

  • Reichel, W., Garcia-Bunuel, R., Dilallo, J.: Progeria and Werner’s syndrome as models for the study of normal human aging. J. Am. Geriatr. Soc. 19, 369–375 (1971).

    PubMed  CAS  Google Scholar 

  • Rohme, D.: Evidence for a relationship between longevity of mammalian species and lifespans of normal fibroblasts in vitro and erythrocytes in vivo. Proc. Nat. Acad. Sci. U.S.A. 78, 5009–5013 (1981).

    Article  CAS  Google Scholar 

  • Schneider, E. L., Mitsui, Y.: The relationship between in vitro cellular aging and in vivo human age. Proc. Nat. Acad. Sci. U.S.A. 73, 3584–3588 (1976).

    Article  CAS  Google Scholar 

  • Schneider, E. L., Mitsui, Y, Aw, K. S., Shorr, S.: Tissue-specific differences in cultured human diploid fibroblasts. Exp. Cell Res. 108, 1–6 (1977).

    PubMed  CAS  Google Scholar 

  • Siminovitch, L., Till, J. E., McCulloch, E.A.: Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cell Comp. Physiol. 64, 23–31 (1964).

    Article  CAS  Google Scholar 

  • Stanley, J. F., Pye, D., MacGregor, A.: Comparison of doubling numbers attained by cultured animal cells with the life span of species. Nature 255, 158–159 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Stewart, H. L., Snell, K. C., Dunham, L.J., Schylen, S. M.: Transplantable and transmissible tumors of animals. Washington, D.C., Armed Forces Institute of Pathology (1959).

    Google Scholar 

  • Strehler, B. L., Mildvan, A. S.: General theory of mortality and aging. Science 132, 14–21 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Tassin, J., Malaise, E., Courtois, Y.: Human lens cells have an in vitro proliferative capacity inversely proportional to the donor age. Exp. Cell Res. 129, 345–350, 1979.

    Google Scholar 

  • Thrasher, J. D., Greulich, R.C.: The duodenal progenitor population. I: Age related increase in the duration of the cryptal progenitor cycle. J. Exp. Zool. 159, 39–46 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Till, J. E., McCulloch, E. A., Siminovitch, L.: Isolation of variant cell lines during serial transplantation of hematopoietic cells derived from fetal liver. J. Nat. Cancer Inst. 33, 707–720 (1964).

    PubMed  CAS  Google Scholar 

  • Vracko, R., McFarland, B. M.: Lifespan of diabetic and non-diabetic fibroblasts in vitro. Exp. Cell Res. 129, 345–350 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Walford, R. L., Jawaid, S. Q., Naeim, F.: Evidence for in vitro senescence of T-lymphocytes cultured from normal human peripheral blood. Age 4, 67–70 (1981).

    Article  Google Scholar 

  • Walford, R. L.: Studies on immunogerontology. J. Am. Geriat. Soc. 30, 617–625 (1982).

    PubMed  CAS  Google Scholar 

  • Williamson, A. R., Askonas, B.A.: Senescence of an antibody-forming cell clone. Nature 238, 337–339 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Williamson, A. R.: Extent and control of antibody diversity. Biochem. J. 130, 325–333 (1972).

    PubMed  CAS  Google Scholar 

  • Witkowski, J. A.: The myth of cell immortality. Trends in Biochem. Sci. 10, 258–260 (1985).

    Google Scholar 

  • Young, L.J.T., Medina, D., deOme, K.B., Daniel, C. W.: The influence of host and tissue age on the lifespan and growth rate of serially transplanted mouse mammary gland. Exp. Gerontol. 6, 49–56 (1971).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Hayflick, L. (1987). Perspectives in Biogerontology. In: Rietbrock, N., Woodcock, B.G. (eds) Clinical Pharmacology in the Aged / Klinische Pharmakologie im Alter. Methods in Clinical Pharmacology, vol 6. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89728-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89728-2_2

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07935-2

  • Online ISBN: 978-3-322-89728-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics