Skip to main content

Direct Numerical Simulation of Separated Turbulent Flow over a Wavy Boundary

  • Chapter
Flow Simulation with High-Performance Computers II

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

Summary

The impact of a wavy surface on turbulent flow is investigated by direct numerical simulation. By means of finite differences in terrain following coordinates, the method treats the flow in a plane channel with wavy lower and flat top surfaces. Both surfaces are smooth. The lower surface wave amplitude is 0.05 and the wavelength is 1 in units of the mean channel height. The Reynolds number in terms of mean velocity and mean channel height is 6760. Parameter studies are performed with different resolution, Reynolds number and geometrical shape of the surface wave. If the vertical resolution is fine enough to resolve the viscous surface layer, a recirculation zone develops as expected for this surface geometry and Reynolds number. The comparison with existing experimental data shows good agreement when the precise details of the surface wave geometry, which deviates slightly from a sinusoidal profile, is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. P. Almeida, D. F. G. Durão, and M. V. Heitor. Wake flows behind two-dimensional model hills. Experimental Thermal and Fluid Science, 7:87–101, 1993.

    Article  Google Scholar 

  2. A. Andrén, A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann. Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Q. J. R. Meteorol. Soc., 120:1457–1484, 1994.

    Article  Google Scholar 

  3. T. B. Benjamin. Shearing flow over a wavy boundary. J. Fluid Mech., 6:161–205, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Breuer and W. Rodi. Large-eddy simulation of complex flows of practical interest. In this publication.

    Google Scholar 

  5. J. J. Buckles, T. J. Hanratty, and R. J. Adrian. Turbulent flow over large-amplitude wavy surfaces. J. Fluid Mech., 140:27–44, 1984.

    Article  Google Scholar 

  6. M. Dianat and I. P. Castro. Turbulence in a separated boundary layer. J. Fluid Mech., 226:91–123, 1991.

    Article  Google Scholar 

  7. A. Dörnbrack, T. Gerz, and U. Schumann. Turbulent breaking and overturning gravity waves below a critical level. Appl. Sci. Res., 54:163–176, 1995.

    Article  MATH  Google Scholar 

  8. A. Dörnbrack and U. Schumann. Numerical simulation of turbulent convective flow over wavy terrain. Boundary-Layer Meteorol., 65:323–355, 1993.

    Google Scholar 

  9. J. G. M. Eggels, F. Unger, M. H. Weiss, J. Westerweel, R. J. Adrian, R. Friedrich, and F. T. M. Nieuwstadt. Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech., 268:175–209, 1994.

    Article  Google Scholar 

  10. W. Gong, P. A. Taylor, and A. Dörnbrack. Turbulent boundary-layer flow over fixed, aerodynamically rough, 2-d sinusoidal waves. J. Fluid Mech., 1996. in press.

    Google Scholar 

  11. C. Härtel and L. Kleiser. Large-eddy simulation of near-wall turbulence. In this publication.

    Google Scholar 

  12. M. Hino and T. Okumura. Coherent structure of turbulent flow over wavy walls. In Proc. 9th Turbulent Shear Flow Symp. Kyoto, Aug. 16–18, pages 14.3.1–14.3.4, 1993.

    Google Scholar 

  13. J. D. Hudson. The effect of a wavy boundary on turbulent flow. PhD thesis, Dept. Chemical Engineering, University of Illinois, Urbana, 1993.

    Google Scholar 

  14. T. Kajishima, Y. Miyake, and T. Ohta. Direct numerical simulation of turbulent flow in a wavy channel. In Proc. of The International Symp. on Mathematical Modelling of Turbulent Flows. Tokyo, Dec. 18–20, pages 176–180, 1995.

    Google Scholar 

  15. J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech., 177:133–166, 1987.

    Article  MATH  Google Scholar 

  16. K. Krettenauer and U. Schumann. Numerical simulation of turbulent convection over wavy terrain. J. Fluid Mech., 237:261–299, 1992.

    Article  Google Scholar 

  17. J. D. Kuzan, T. J. Hanratty, and R. J. Adrian. Turbulent flows with incipient separation over solid waves. Exper. in Fluids, 7:88–98, 1989.

    Google Scholar 

  18. H. Lamb. Hydrodynamics. Dover, New York, 1945.

    Google Scholar 

  19. C. Maaß, A. Dörnbrack, and U. Schumann. Grobstruktursimulationen turbulenter Strömungen über welligem Untergrund. Deutsche Meteorologen-Tagung, 16.–20.3.1992, Berlin. In Ann. Meteorol., volume 27, pages 306–307, 1992.

    Google Scholar 

  20. C. Maaß and U. Schumann. Numerical simulation of turbulent flow over a wavy boundary. In P. R. Voke, L. Kleiser, and J.-P. Chollet, editors, Direct and large-eddy simulation I: selected papers from the First ERCOFTAC Workshop on Direct and Large-Eddy Simulation, pages 287–297. Kluwer Academic Press, Dordrecht, 1994.

    Google Scholar 

  21. H. Motzfeld. Die turbulente Strömung an welligen Wänden. Z. angew. Math. Mech., 17:193–212, 1937.

    Article  MATH  Google Scholar 

  22. W. Rodi, editor. ERCOFTAC Workshop on Data Bases and Testing of Calculation Methods for Turbulent Flows, Karlsruhe, April 3–7 1995.

    Google Scholar 

  23. U. Schumann. Large-eddy simulation of turbulent convection over flat and wavy terrain. In B. Galperin and S. A. Orszag, editors, Large-Eddy Simulation of Complex Engineering and Geophysical Flows, pages 399–421. Cambridge Univ. Press, 1993.

    Google Scholar 

  24. U. Schumann. Stochastic backscatter of turbulence energy and scalar variances by random subgrid-scale fluxes. Proc. Roy. Soc. London A, 451:293–318 and 811, 1995.

    Article  MATH  Google Scholar 

  25. U. Schumann and M. Strietzel. Parallel solution of tridiagonal systems for the Poisson equation. J. Sci. Comput., 10:181–190, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. B. Thorsness, P. E. Morrisroe, and T. J. Hanratty. A comparison of linear theory with measurements of the variation of shear stress along a solid wave. Chem. Eng. Sci., 33:579–592, 1978.

    Article  Google Scholar 

  27. F. Unger. Numerische Simulation turbulenter Rohrströmungen. PhD thesis, Technische Universität, München, 1994.

    Google Scholar 

  28. N. Wood and P. Mason. The pressure force induced by neutral, turbulent flow over hills. Q. J. R. Meteorol. Soc, 119:1233–1267, 1993.

    Article  Google Scholar 

  29. D. P. Zilker, G. W. Cook, and T. J. Hanratty. Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech., 82:29–51, 1977.

    Article  Google Scholar 

  30. D. P. Zilker and T. J. Hanratty. Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows. J. Fluid Mech., 90:257–271, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Maaß, C., Schumann, U. (1996). Direct Numerical Simulation of Separated Turbulent Flow over a Wavy Boundary. In: Hirschel, E.H. (eds) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89849-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89849-4_17

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89851-7

  • Online ISBN: 978-3-322-89849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics