Skip to main content

Monodromy Preserving Deformation, Painlevé Equations and Garnier Systems

  • Chapter
From Gauss to Painlevé

Part of the book series: Aspects of Mathematics ((ASMA,volume 16))

  • 723 Accesses

Abstract

The most important non-linear ordinary differential equations are the following six Painlevé equations:

$$ \begin{array}{*{20}c} {P_I :\frac{{d^2 \lambda }} {{dt^2 }} = 6\lambda ^2 + t,} \\ {P_{II} :\frac{{d^2 \lambda }} {{dt^2 }} = 2\lambda ^3 + t\lambda + \alpha ,} \\ {P_{III} :\frac{{d^2 \lambda }} {{dt^2 }} = \frac{1} {\lambda }\left( {\frac{{d\lambda }} {{dt}}} \right)^2 - \frac{1} {\lambda }\frac{{d\lambda }} {{dt}} + \frac{1} {t}(\alpha \lambda ^2 + \beta ) + \gamma \lambda ^3 + \frac{\sigma } {\lambda },} \\ {P_{IV} :\frac{{d^2 \lambda }} {{dt^2 }} = \frac{1} {{2\lambda }}\left( {\frac{{d\lambda }} {{dt}}} \right)^2 - \frac{3} {2}\lambda ^3 + 4t\lambda ^4 + 2(t^2 - \alpha )\lambda + \frac{\beta } {\lambda },} \\ {P_V :\frac{{d^2 \lambda }} {{dt^2 }} = \left( {\frac{1} {{2\lambda }} + \frac{1} {{\lambda - 1}}} \right)\left( {\frac{{d\lambda }} {{dt}}} \right)^2 - \frac{1} {t}\frac{{d\lambda }} {{dt}} + \frac{{(\lambda - 1)^2 }} {t}(\sigma \lambda + \frac{\beta } {\lambda }) + \gamma \frac{\lambda } {t} + \sigma \frac{{\lambda (\lambda + 1)}} {{\lambda - 1}},} \\ {P_{VI} :\frac{{d^2 \lambda }} {{dt^2 }} = \frac{1} {2}\left( {\frac{1} {\lambda } + \frac{1} {{\lambda - 1}} + \frac{1} {{\lambda - t}}} \right)\left( {\frac{{d\lambda }} {{dt}}} \right)^2 - \left( {\frac{1} {t} + \frac{1} {{t - 1}} + \frac{1} {{\lambda - t}}} \right)\frac{{d\lambda }} {{dt}} + \frac{{\lambda (\lambda - 1)(\lambda - 1)}} {{t^2 (t - 1)^2 }}\left[ {(\sigma - \beta \frac{t} {{\lambda ^2 }} + \gamma \frac{{t - 1}} {{(\lambda - 1)^2 }} + \left( {\frac{1} {2} - \delta } \right)\frac{{t(t - 1)}} {{(\lambda - t)^2 }}} \right],} \\ \end{array} $$

where α, β, γ, δ are complex constants. (Warning: The parameters of P VI are slitely different from those customarily used; -β and ½ - δ have been denoted by β and δ. The reason of our choice will turn out to be clear in the text.) We study, in this chapter, these differential equations first classically (§1) and secondly in the framework of the monodromy preserving deformation. After introducing the concept of monodromy preserving deformation (§2, §3), we derive the Gamier system written in the form of Hamiltonian system, which governs such deformation of a second order Fuchsian equation with n+3 singularities (§4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M. (1991). Monodromy Preserving Deformation, Painlevé Equations and Garnier Systems. In: From Gauss to Painlevé. Aspects of Mathematics, vol 16. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-90163-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-90163-7_3

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-90165-1

  • Online ISBN: 978-3-322-90163-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics