Skip to main content

Pseudocubes and Primality Testing

  • Conference paper
Algorithmic Number Theory (ANTS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3076))

Included in the following conference series:

Abstract

The recent ideas of Agrawal, Kayal, and Saxena have produced a milestone in the area of deterministic primality testing. Unfortunately, their method, as well as their successors are mainly of theoretical interest, as they are much too slow for practical applications.

Via a totally different approach, Lukes et al. developed a test which is conjectured to prove the primality of N in time only O((lg N)3 + 0(1)). Their (plausible) conjecture concerns the distribution of pseudosquares. These are numbers which locally behave like perfect squares but are nevertheless not perfect squares.

While squares are easy to deal with, this naturally gives rise to the question of whether the pseudosquares can be replaced by more general types of numbers. We have succeeded in extending the theory to the cubic case. To capture pseudocubes we rely on interesting properties of elements in the ring of Eisenstein integers and suitable applications of cubic residuacity. Surprisingly, the test itself is very simple as it can be formulated in the integers only. Moreover, the new theory appears to lead to an even more powerful primality testing algorithm than the one based on the pseudosquares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics (to appear)

    Google Scholar 

  2. Avanzi, R., Mihailescu, P.: Efficient ’quasi - deterministic’ primality test improving AKS (2003), Available at http://www-math.uni-paderborn.de/preda/

  3. Bach, E., Shallit, J.: Algorithmic number theory. Foundations of Computing Series, vol. 1. MIT Press, Cambridge (1996); Efficient algorithms

    MATH  Google Scholar 

  4. Bernstein, D.: Doubly focused enumeration of locally square polynomial values (2003), Available at http://cr.yp.to/focus.html

  5. Bernstein, D.: Proving primality in essentially quartic random time (2003), Available at http://cr.yp.to/papers.html/quartic

  6. Berrizbeitia, P.: Sharpening ”Primes is in P” for a large family of numbers (2002), Available at http://arxiv.org/abs/math.NT/0211334

  7. Berrizbeitia, P., Berry, T.: Biquadratic reciprocity and a Lucasian primality test. Math. Comp., Posted July 1 (2003)

    Google Scholar 

  8. Berrizbeitia, P., Berry, T.G.: Cubic reciprocity and generalised Lucas-Lehmer tests for primality of A · 3n ±1. Proc. Amer. Math. Soc. 127(7), 1923–1925 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cohen, H.: A course in computational algebraic number theory. Graduate Texts in Mathematics, vol. 138. Springer, Berlin (1993)

    MATH  Google Scholar 

  10. Cox, D.A.: Primes of the form x2 + ny2. In: Fermat, class field theory and complex multiplication, A Wiley-Interscience Publication. John Wiley & Sons Inc. (1989)

    Google Scholar 

  11. Crandall, R., Pomerance, C.: Prime numbers. In: A computational perspective, Springer, New York (2001)

    Google Scholar 

  12. Guthmann, A.: Effective primality tests for integers of the forms N = k · 3n + 1 and N = k · 2m3n + 1. BIT 32(3), 529–534 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ireland, K., Rosen, M.: A classical introduction to modern number theory, 2nd edn. Graduate Texts in Mathematics, vol. 84. Springer, New York (1990)

    MATH  Google Scholar 

  14. Lemmermeyer, F.: Reciprocity laws. Springer Monographs in Mathematics. Springer, Berlin (2000); From Euler to Eisenstein

    MATH  Google Scholar 

  15. Lenstra, H.W.J., Pomerance, C.: Primality Testing with Gaussian Periods (2003) (manuscript)

    Google Scholar 

  16. Lukes, R.: A Very Fast Electronic Number Sieve. PhD thesis, University of Manitoba, Winnipeg (1995)

    Google Scholar 

  17. Lukes, R.F., Patterson, C.D., Williams, H.C.: Some results on pseudosquares. Math. Comp. 65(213), 361–372, S25–S27 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schinzel, A.: On pseudosquares. In: New trends in probability and statistics, Vol. 4 (Palanga, 1996), VSP, Utrecht, pp. 213–220 (1997)

    Google Scholar 

  19. Stephens, A.J., Williams, H.C.: An open architecture number sieve. In: Number theory and cryptography (Sydney, 1989). London Math. Soc. Lecture Note Ser., vol. 154, pp. 38–75. Cambridge Univ. Press, Cambridge (1990)

    Google Scholar 

  20. Williams, H.C.: Primality testing on a computer. Ars Combin. 5, 127–185 (1978)

    MATH  MathSciNet  Google Scholar 

  21. Williams, H.C.: An M3 public-key encryption scheme. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 358–368. Springer, Heidelberg (1986)

    Google Scholar 

  22. Williams, K.S.: Mertens’ theorem for arithmetic progressions. J. Number Theory 6, 353–359 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berrizbeitia, P., Müller, S., Williams, H.C. (2004). Pseudocubes and Primality Testing. In: Buell, D. (eds) Algorithmic Number Theory. ANTS 2004. Lecture Notes in Computer Science, vol 3076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24847-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24847-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22156-2

  • Online ISBN: 978-3-540-24847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics