Skip to main content

Encoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

Abstract

Permutations of vertices can represent constrained spanning trees for evolutionary search via a decoder based on Prim’s algorithm, and random keys can represent permutations. Though we might expect that random keys, with an additional level of indirection, would provide inferior performance compared with permutations, a genetic algorithm that encodes spanning trees with random keys is as effective as one whose genotypes are permutations of vertices in comparisons on a variety of instances of the bounded-diameter minimum spanning tree problem. These results suggest that either coding may be used, at the programmer’s convenience, in evolutionary algorithms for problems involving constrained spanning trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitley, D.: Permutations. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Evolutionary Computation 1: Basic Algorithms and Operators, vol. ch-33, pp. 274–284. Institute of Physics Publishing, Philadelphia (2000)

    Google Scholar 

  2. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing 6, 154–160 (1994)

    MATH  Google Scholar 

  3. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. In: Studies in Fuzziness and Soft Computing, vol. 104, Physica-Verlag, Heidelberg (2002)

    Google Scholar 

  4. Norman, B.A., Smith, A.E.: Random keys genetic algorithm with adaptive penalty function for optimization of constrained facility layout problems. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation, IEEE, IEEE Neural Network Council, Evolutionary Programming Society. 407–411, pp. 407–411. IEEE, Los Alamitos (1997)

    Google Scholar 

  5. Knjazew, D., Goldberg, D.E.: OMEGA - Ordering messy GA: Solving permutation problems with the fast messy genetic algorithm and random keys. Technical Report 2000004, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana- Champaign (2000)

    Google Scholar 

  6. Bosman, P.A.N., Thierens, D.: Permutation optimization by iterated estimation of random keys marginal product factorizations. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 331–340. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Gonçalves, J.F., Resende, M.G.C.: A hybrid genetic algorithm for manufacturing cell formation. Technical report, AT&T Labs, TD-5FE6RN (2002)

    Google Scholar 

  8. Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C.: A hybrid genetic algorithm for the job shop scheduling problem. Technical report, AT&T Labs, TD- 5EAL6J (2002)

    Google Scholar 

  9. Rothlauf, F., Goldberg, D., Heinzl, A.: Network random keys – a tree network representation scheme for genetic and evolutionary algorithms. Technical Report 8/2000, University of Bayreuth (2000)

    Google Scholar 

  10. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematics Society 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  11. Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractibility: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Bala, K., Petropoulos, K., Stern, T.E.: Multicasting in a linear lightwave network. In: IEEE INFOCOM 1993, pp. 1350–1358 (1993)

    Google Scholar 

  14. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Transactions on Computer Systems 7, 61–77 (1989)

    Article  Google Scholar 

  15. Bookstein, A., Klein, S.T.: Compression of correlated bit-vectors. Information Systems 16, 110–118 (1991)

    Article  Google Scholar 

  16. Abdalla, A., Deo, N., Gupta, P.: Random-tree diameter and the diameter constrained MST. Congressus Numerantium 144, 161–182 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Redstone, J., Ruzzo, W.L.: Algorithms for a simple point placement problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Raidl, G.R., Julstrom, B.A.: Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem. In: Lamont, G., et al. (eds.) Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 747–752. ACM Press, New York (2003)

    Chapter  Google Scholar 

  19. Raidl, G.R., Julstrom, B.A.: Edge-sets: An effective evolutionary coding of spanning trees. IEEE Transactions on Evolutionary Computation 7, 225–239 (2003)

    Article  Google Scholar 

  20. Julstrom, B.A., Raidl, G.R.: A permutation-coded evolutionary algorithm for the bounded-diameter minimum spanning tree problem. In: Barry, A. (ed.) 2003 Genetic and Evolutionary Computation ConferenceWorkshop Program, Chicago, IL, pp. 2–7 (2003)

    Google Scholar 

  21. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers and Operations Research 22, 5–13 (1995)

    Article  MATH  Google Scholar 

  22. Smith, D.: Bin packing with adaptive search. In: Greffenstette, J.J. (ed.) Proceedings of the First International Conference on Genetic Algorithms, pp. 202–207. Lawrence Erlbaum, Mahwah (1985)

    Google Scholar 

  23. Prosser, P.: A hybrid genetic algorithm for pallet loading. In: Proceedings of the 8th European Conference on Artificial Intelligence, London, Pitman (1988)

    Google Scholar 

  24. Beasley, J.E.: OR-library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41, 1069–1072 (1990)

    Google Scholar 

  25. Schindler, B., Rothlauf, F., Pesch, H.-J.: Evolution strategies, network random keys, and the one-max tree problem. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 143–152. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Julstrom, B.A. (2004). Encoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_122

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_122

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics