Skip to main content

Similarities Between Endocannabinoid Signaling in Animal Systems and N-Acylethanolamine Metabolism in Plants

  • Chapter
Communication in Plants

Abstract

N-Acylethanolamines (NAEs) are minor lipid constituents of plant and animal cells, and their roles in mammalian physiology and neurobiology have been studied intensively for many years. However, corresponding studies on the function of NAEs in plants have appeared only recently. Within the last decade significant progress has been made in quantifying NAEs in plant tissues, characterizing their potential targets in plant cells and identifying the relevant enzyme involved in their degradation, but much remains to be determined regarding the role of these fatty acid amides in plant physiology. Although our understanding of the specific functions of NAE in plants is far from complete, recent advances in plant NAE biochemistry are pointing to intriguing similarities between animals and plants in the metabolism and perception of NAE. In this chapter we discuss NAEs as prospective signaling and regulatory molecules in plant cells. Advances in mammalian NAE research are presented when appropriate in order to draw parallels as well as to highlight differences between plant NAE metabolism and the endocannabinoid signaling system, the major pathway by which NAE exerts its physiological effects in animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin-Brown S, Chapman KD (2002) Inhibition of phospholipase Dα by N-acylethanolamines. Plant Physiol 129:1892–1898

    Article  PubMed  CAS  Google Scholar 

  • Bachur NR, Masek K, Melmon KL, Undenfriend S (1965) Fatty acid amides of ethanolamine in mammalian tissues. J Biol Chem 240:1019–1024

    PubMed  CAS  Google Scholar 

  • Berdyshev EV, Schmid PC, Krebsbach RJ, Hillard CJ, Huang C, Chen N, Dong Z, Schmid HH (2001) Cannabinoid-receptor-independent cell signalling by N-acylethanolamines. Biochem J 360:67–75

    Article  PubMed  CAS  Google Scholar 

  • Berger C, Schmid PC, Schabitz WR, Wolf M, Schwab S, Schmid HHO (2004) Massive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia? J Neurochem 88:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Hou G, Chapman KD (2003) Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings. Planta 217:206–217

    PubMed  CAS  Google Scholar 

  • Chapman KD, Moore TS (1993) Catalytic properties of a newly discovered acyltransferase that synthesizes N-acylphosphatidylethanolamine in cottonseed (Gossypium hirsutum L.) microsomes. Plant Physiol 102:761–769

    PubMed  CAS  Google Scholar 

  • Chapman KD, Tripathy S, Venables B, Desouza A (1998) N-Acylethanolamines: formation and molecular composition of a new class of plant lipids. Plant Physiol 116:1163–1168

    Article  PubMed  CAS  Google Scholar 

  • Chapman KD, Venables B, Blair R Jr, Bettinger C (1999) N-Acylphosphatidylethanolamines in seeds: quantification of molecular species and their degradation upon imbibition. Plant Physiol 120: 1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Chapman KD (2000) Emerging physiological roles for N-acylphosphatidylethanolamine metabolism in plants: signal transduction and membrane protection. Chem Phys Lipids 108:221–230

    Article  PubMed  CAS  Google Scholar 

  • Chapman KD (2004) The occurrence, metabolism and prospective functions of N-acylethanolamines in plants. Prog Lipid Res 43:302–327

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterizationof an enzymethat degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98:9371–9376

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Ramirez A, Lopez-Bucio J, Ramirez-Pimentel G, Zurita-Silva A, Sanchez-Calderon L, Ramirez-Chavez E, Gonzalez-Ortega E, Herrera-Estrella L (2004) The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity. Plant Cell 16:2020–2034

    Article  PubMed  CAS  Google Scholar 

  • De Fonseca FR, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M (2005) The endocannabinoid system: physiology and pharmacology. Alcohol 40:2–14

    Google Scholar 

  • De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: a general view and latest additions. Br J Pharmacol 141:765–774

    Article  PubMed  Google Scholar 

  • De Petrocellis L, Bisogno T, Ligresti A, Bifulco M, Melck D, Di Marzo V (2002) Effect on cancer cell proliferation of palmitoylethanolamide, a fatty acid amide interacting with both the cannabinoid and vanilloid signalling systems. Fundam Clin Pharmacol. 16:297–302

    Article  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J, Gadella TW, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002). The phenylpropanoid pathway and plant defense — a genomics perspective. Plant Mol Pathol 3:371–390

    Article  CAS  Google Scholar 

  • Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of refractory state. Plant J 4:307–316

    Article  CAS  Google Scholar 

  • Fowler CJ (2003) Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents non-psychoactive cannabinoids, ‘entourage’ compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid psychotropic effects. Brain Res Rev 41:26–43

    Article  PubMed  CAS  Google Scholar 

  • Gardiner JC, Collings DA, Harper JD, Marc J (2003) The effects of phospholipase Dantagonist 1-butanol on seedling development and microtubule organization in Arabidopsis. Plant Cell Physiol 44:687–696

    Article  PubMed  CAS  Google Scholar 

  • Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D (2005) Regulation of food intake by oleoylethanolamide. Cell Mol Life Sci 62:708–716

    Article  PubMed  Google Scholar 

  • McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydolase. Annu Rev Biochem 74:411–432

    Article  PubMed  CAS  Google Scholar 

  • Motes CM, Pechter P, Yoo C-M, Wang Y-S, Chapman KD, Blancaflor EB (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine (NAE), on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma (in press)

    Google Scholar 

  • Ohashi Y, Oka A, Rodriguez-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipids signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular characterization of phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Morishita J, Wang J, Schmid PC, Krebsbach RJ, Schmid HHO, Ueda N (2005) Mammalian cells stably overexpressing N-acylphosphatidylethanolamine-hydrolyzing phospholipase D exhibit dramatically reduced levels of N-acylphosphatidylethanolamines. Biochem J 389:241–247

    Article  PubMed  CAS  Google Scholar 

  • Pappan K, Austin-Brown S, Chapman KD, Wang X (1998) Substrate selectivities and lipid modulation of plant phospholipase Dα, β and γ. Arch Biochem Biophys 353:131–140

    Article  PubMed  CAS  Google Scholar 

  • Rawyler AJ, Braendle RA (2001) N-Acyphospahtidylethanolamine accumulation in potato cells upon energy shortage caused by anoxia or respiratory inhibitors. Plant Physiol 127:240–251

    Article  PubMed  CAS  Google Scholar 

  • Reggio PH (2003) Pharmacophores for ligand recognition and activation/inactivation of the cannabinoid receptors. Curr Pharm Des. 9:1607–33

    Article  PubMed  CAS  Google Scholar 

  • Sandoval JA, Huang Z-H, Garret DC, Gage DA, Chapman KD (1995) N-Acylphosphatidylethanolamine in dry and imbibing cotton (Gossypium hirsutum L.) seeds: amounts, molecular species and enzymatic synthesis. Plant Physiol 109:269–275

    Article  PubMed  CAS  Google Scholar 

  • Saghatelian A, Trauger SA, Want EJ, Hawkins EG, Siuzdak G, Cravatt BF (2004) Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43:14332–14339

    Article  PubMed  CAS  Google Scholar 

  • Schmid HH, Schmid PC, Natarajan V (1990) N-Acylated glycerophospholipids and their derivatives. Prog Lipid Res 29:1–43

    Article  PubMed  CAS  Google Scholar 

  • Schmid HH, Schmid PC, Natarajan V (1996) The N-acylation-phosphodiesterase pathway and cell signaling. Chem Phys Lipids 80:133–142

    Article  PubMed  CAS  Google Scholar 

  • Schmid HH, Schmid PC, Berdyshev EV (2002) Cell signaling by endocannabinoids and their congeners: questions of selectivity and other challenges. Chem Phys Lipids 121:111–134

    Article  PubMed  CAS  Google Scholar 

  • Schmid HH, Berdyshev EV(2002) Cannabinoid receptor-inactive N-acylethanolamines and other fatty acid amides: metabolism and function. Prostaglandins Leukot Essent Fatty Acids 66:363–376

    Article  PubMed  CAS  Google Scholar 

  • Self DW (1999) Anandamide: a candidate neurotransmitter heads for the big leagues. Nat Neurosci 2:303–304

    Article  PubMed  CAS  Google Scholar 

  • Shrestha R, Noordimeer M, van der Stelt M, Veldink G, Chapman KD (2002) N-Acylethanolamines are metabolized by lipoxygenase and amidohydrolase in two competing pathways during cotton (Gossypium hirsutum L) seed imbibition. Plant Physiol 130:391–401

    Article  PubMed  CAS  Google Scholar 

  • Shrestha R, Dixon RA, Chapman KD (2003) Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J Biol Chem 278:34990–34997

    Article  PubMed  CAS  Google Scholar 

  • Tripathy S, Venables BJ, Chapman KD (1999) N-Acylethanolamines in signal transduction of elicitor perception: attenuation of alkalinization response and activation of defense gene expression. Plant Physiol 121:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Tripathy S, Kleppinger-Sparace K, Dixon RA, Chapman KD (2003) N-Acylethanolamine signaling in tobacco is mediated by a membrane associated, high-affinity binding protein. Plant Physiol 131:1781–1791

    Article  PubMed  CAS  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signaling pathway. Plant Cell 14:S153–S164

    PubMed  CAS  Google Scholar 

  • Venables BJ, Waggoner CA, Chapman KD (2005) N-Acylethanolamines in selected legumes. Phytochem (in press)

    Google Scholar 

  • Wang X (2002) Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol 5:403–414

    Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–36

    Article  PubMed  CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678–682

    Article  PubMed  CAS  Google Scholar 

  • van der Stelt M, Noordermeer MA, Kiss T, van Zadelhoff G, Merghart B, Veldink GA, Vliegenthart JFG (2000) Formation of a new class of oxylipins from N-acyl (ethanol) amines by the lipoxygenase pathway. Eur J Biochem 267:2000–2007

    Article  Google Scholar 

  • Zhang W, Qin C, Zhoa J, Wang X (2004) Phospholipase Dα 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blancaflor, E.B., Chapman, K.D. (2006). Similarities Between Endocannabinoid Signaling in Animal Systems and N-Acylethanolamine Metabolism in Plants. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_14

Download citation

Publish with us

Policies and ethics