Skip to main content

Neurobiological View of Plants and Their Body Plan

  • Chapter
Communication in Plants

Abstract

All principal metabolic biochemical pathways are conserved in animal and plant cells. Besides this, plants have been shown to be identical to animals from several other rather unexpected perspectives. For their reproduction, plants use identical sexual processes based on fusing sperm cells and oocytes. Next, plants attacked by pathogens develop immunity using processes and mechanisms corresponding to those operating in animals. Last, but not least, both animals and plants use the same molecules and pathways to drive their circadian rhythms. Currently, owing to the critical mass of new data which has accumulated, plant science has reached a crossroads culminating in the emergence of plant neurobiology as the most recent area of plant sciences. Plants perform complex information processing and use not only action potentials but also synaptic modes of cell-cell communication. Thus, the term ‘plant neurobiology’ appears to be justified. In fact, the word neuron was taken by animal neurobiologists from Greek, where the original meaning of this word is ‘vegetal fibre’. Several surprises emerge when applying a ‘neurobiological’ perspective to illustrate how the plant tissues and the plant body are organized. Firstly, root apices are specialized not only for the uptake of nutrients but they also seem to support neuronal-like activities based on plant synapses. These synapses transport auxin via synaptic processes, suggesting that auxin is a plant-specific neurotransmitter. Altogether, root apices emerge as command centres and represent the anterior pole of the plant body. In accordance with this perspective, shoot apices act as the posterior pole. They are specialized for sexual reproduction and the excretion of metabolic products via hydathodes, trichomes, and stomata. Next, vascular elements allow the rapid spread of hydraulic signals and classical action potentials resembling nerves. As plants are capable of learning and they take decisions about their future activities according to the actual environmental conditions, it is obvious that they possess a complex apparatus for the storage and processing of information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853

    PubMed  CAS  Google Scholar 

  • Atsatt PR (1988) Are vascular plants ‘reside-out’ lichens? Ecology 69:17–23

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Parker JS, Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L.). J Cell Sci 103:191–200

    Google Scholar 

  • Baluška F, Parker JS, Barlow PW (1993) A role for gibberellic acid in orienting microtubules and regulating cell growth polarity in the maize root cortex. Planta 191:149–157

    Google Scholar 

  • Baluška F, Hauskrecht M, Barlow PW, Sievers A (1996) Gravitropism of the primary root of maize: a complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton. Planta 197:310–318

    Google Scholar 

  • Baluška F, Vitha S, Barlow PW, Volkmann D (1997) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72:113–121

    PubMed  Google Scholar 

  • Baluška F, Barlow PW, Volkmann D (2000) Actin and myosin VIII in developing root cells. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, The Netherlands, pp 457–476

    Google Scholar 

  • Baluška F, Busti E, Dolfini S, Gavazzi G, Volkmann D (2001a) Lilliputian mutant of maize shows defects in organization of actin cytoskeleton. Dev Biol 236:478–491

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Jásik J, Edelmann HG, Salajová T, Volkmann D (2001b) Latrunculin B induced plant dwarfism: plant cell elongation is F-actin dependent. Dev Biol 231:113–124

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2001c) A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications. J Plant Growth Regul 20:170–181

    Article  Google Scholar 

  • Baluška F, Wojtaszek P, Volkmann D, Barlow PW (2003a) The architecture of polarized cell growth: the unique status of elongating plant cells. BioEssays 25:569–576

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Menzel D (2003b) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004a) Eukaryotic cells and their cell bodies: cell theory revisited. Ann Bot 94:9–32

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2004b) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia 59:7–19

    Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005a) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    PubMed  Google Scholar 

  • Baluška F, Barlow PW, Baskin TI, Chen R, Feldman L, Forde BG, Geisler M, Jernstedt J, Menzel D, Muday GK, Murphy A, Šamaj J, Volkmann D (2005b) What is apical and what is basal in plant root development? Trends Plant Sci 10:409–411

    Article  PubMed  CAS  Google Scholar 

  • Barkman TJ, Lim S-H, Salleh M, Nais J (2004) Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. Proc Natl Acad Sci USA 101:787–792

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW, Baluška F (2000) Cytoskeletal perspectives on root growth and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol 51:289–322

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW, Volkmann D, Baluška F (2004) Polarity in roots. In: Lindsey K (ed) Polarity in plants. Oxford: Blackwell, Oxford, pp 192–241

    Google Scholar 

  • Barlow PW (2003) The root cap: cell dynamics, cell differentiation and cap function. J Plant Growth Regul 21:261–286

    Article  CAS  Google Scholar 

  • Bird DMK, Kaloshian I (2003) Are roots special? Nematodes have their say. Physiol Mol Plant Pathol 62:115–123

    Article  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  PubMed  CAS  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Brown R (1822) An account of a new genus of plants, named Rafflesia. Trans Linn Soc Lond 13: 201–234

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Cashmore AR (2003) Cryptochromes: enabling plants and animals to determine circadian time. Cell 114:537–543

    Article  PubMed  CAS  Google Scholar 

  • De Boer AH, Volkov V (2003) Logistics of water and salt transport through the plant: structure and functioning of the xylem. Plant Cell Environ 26:87–101

    Article  Google Scholar 

  • Denison RF, Toby Kiers E (2004) Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microbes Infect 6:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • DeSilva DLR, Mansfield TA, McAinsh MR (2001) Changes in stomatal behaviour in the calcicole Leontodon hispidus due to the disruption by ozone of the regulation of apoplastic Ca2+ by trichomes. Planta 214:158–162

    Article  CAS  Google Scholar 

  • Dicke M, Sabelis M (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38:148–165

    Article  Google Scholar 

  • Douglas SJ, Dawson-Scully K, Sokolowski MB (2005) The neurogenetics and evolution of food-related behaviour. Trends Neurosci (in press)

    Google Scholar 

  • Estan MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56:703–712

    Article  PubMed  CAS  Google Scholar 

  • Filleur S, Walch-Liu P, Gan Y, Forde BG (2005) Nitrate and glutamate sensing by plant roots. Biochem Soc Trans 33:283–286

    Article  PubMed  CAS  Google Scholar 

  • Fahn A (2000) Structure and function of secretory cells. Adv Bot Res 31:37–75

    Article  CAS  Google Scholar 

  • Friml J (2003) Auxin transport — shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  PubMed  CAS  Google Scholar 

  • Gilliham M, Tester M (2005) The regulation of anion loading to the maize root xylem. Plant Physiol 137:819–828

    Article  PubMed  CAS  Google Scholar 

  • Goh CH, Nam HG, Park YS (2003) Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants. Plant J 36:240–255

    Article  PubMed  CAS  Google Scholar 

  • Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci USA 101:3863–3867

    Article  PubMed  CAS  Google Scholar 

  • Hooke R (1665) Of the schematisme or texture of cork, and of the cells and pores of some other such frothy bodies. Observation 18. Micrographia. The Royal Society, London, pp 112–116

    Google Scholar 

  • Hutangura P, Mathesius U, Jones MGK, Rolfe BG (1999) Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust J Plant Physiol 26: 221–231

    CAS  Google Scholar 

  • Huxley TH (1853) A lecture on the identity of structure of plants and animals. Q J Microsc Sci 1:307–311

    Google Scholar 

  • Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 493:493–511

    Article  Google Scholar 

  • Jiang K, Feldman L (2002) Root meristem establishment and maintenance: the role of auxin. J Plant Growth Regul 21:432–440

    Article  CAS  Google Scholar 

  • Jiang K, Feldman L (2005) Regulation of root apical meristem development. Annu Rev Cell Dev Biol 21:485–509

    Article  PubMed  CAS  Google Scholar 

  • Jorgense R (1993) The origin of land plants: a union of alga and fungus advanced by flavonoids? Bio Systems 31:193–207

    Google Scholar 

  • Jürgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20:3609–3616

    Article  PubMed  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) Plant development: auxin in loops. Curr Biol 15:R208–R210

    Article  PubMed  CAS  Google Scholar 

  • Koch C (2004a) Thinking about the conscious mind. Science 306:979–980

    Article  CAS  Google Scholar 

  • Koch C (2004b) The quest for consciousness: a neurobiological approach. Roberts, Greenwood Village, CO

    Google Scholar 

  • Kolb D, Müller M (2004) Light, conventional and environmental scanning electron microscopy of the trichomes of Cucurbita pepo subsp. pepo var. styriaca and histochemistry of glandular secretory products. Ann Bot 94:515–526

    Article  PubMed  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheimer E (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    Article  PubMed  CAS  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Article  Google Scholar 

  • Mancuso S, Marras AM, Volker M, Baluška F (2005) Non-invasive and continuous recordings of auxin fluxes in intact root apex with a carbon-nanotube-modified and self-referencing microelectrode. Anal Biochem 341:344–351

    Article  PubMed  CAS  Google Scholar 

  • Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    Article  PubMed  Google Scholar 

  • Nelson T (2004) Plant signaling: notes from the underground. Curr Biol 14:R929–R930

    Article  PubMed  CAS  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Palanivelu R, Preuss D (2000) Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol 10:517–524

    Article  PubMed  CAS  Google Scholar 

  • Pilot G, Stransky H, Bushey DF, Pratelli R, Ludewig U, Wingate VP, Frommer WB (2004) Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves. Plant Cell 16:1827–1840

    Article  PubMed  CAS  Google Scholar 

  • Press MC, Phoenix GK (2004) Impacts of parasitic plants on natural communities. New Phytol 166:737–751

    Article  Google Scholar 

  • Raguso SA (2005) Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr Opin Plant Biol 7:434–440

    Article  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  PubMed  CAS  Google Scholar 

  • Sachs T (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41:649–656

    PubMed  CAS  Google Scholar 

  • Sachs T (2004) Self-organization of tree form: a model for complex social systems. J Theor Biol 230:197–202

    Article  PubMed  Google Scholar 

  • Searle JR (1997) The mystery of consciousness. Oxford University Press, New York

    Google Scholar 

  • Searle JR (2004) Mind. A brief introduction. Oxford University Press, New York

    Google Scholar 

  • Smyth DR (2005) Morphogenesis of flowers — our evolving view. Plant Cell 17:330–341

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in root. Plant J 41:319–331

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (2001) How plants learn. Proc Natl Acad Sci USA 96:4216–4218

    Article  Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  PubMed  CAS  Google Scholar 

  • van Bel A (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295:2051

    Article  PubMed  Google Scholar 

  • van der Putten WH, Vet LEM, Harvey JA, Waeckers FL (2001) Linking above-and belowground multitrophic interactions. Trends Ecol Evol 16:547–554

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14:1739–1746

    Article  PubMed  CAS  Google Scholar 

  • Voigt B, Timmers T, Šamaj J, Müller J, Baluška F, Menzel D (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Baluška F (1999) The actin cytoskeleton in plants: from transport networks to signaling networks. Microsc Res Tech 47:135–154

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  PubMed  CAS  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  PubMed  CAS  Google Scholar 

  • Yoder JI (2001) Host-plant recognition by parasitic Scrophulariaceae. CurrOpin Plant Biol 4:359–365

    Article  CAS  Google Scholar 

  • Zyalalov AA (2004) Water flows in higher plants: physiology, evolution, and system analysis. Russ J Plant Physiol 51:547–555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baluška, F., Volkmann, D., Hlavacka, A., Mancuso, S., Barlow, P.W. (2006). Neurobiological View of Plants and Their Body Plan. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_2

Download citation

Publish with us

Policies and ethics