Skip to main content

Scaled Dimension and the Kolmogorov Complexity of Turing-Hard Sets

  • Conference paper
Mathematical Foundations of Computer Science 2004 (MFCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3153))

Abstract

Scaled dimension has been introduced by Hitchcock et al. (2003) in order to quantitatively distinguish among classes such as SIZE(2αn) and SIZE(\( 2^{n^{\alpha}}\)) that have trivial dimension and measure in ESPACE.

This paper gives an exact characterization of effective scaled dimension in terms of resource-bounded Kolmogorov complexity. We can now view each result on the scaled dimension of a class of languages as upper and lower bounds on the Kolmogorov complexity of the languages in the class.

We prove a Small Span Theorem for Turing reductions that implies the class of ≤ P/poly T-hard sets for ESPACE has (–3)rd-pspace dimension 0.

As a consequence we have a nontrivial upper bound on the Kolmogorov complexity of all hard sets for ESPACE for this very general nonuniform reduction, ≤ P/poly T. This is, to our knowledge, the first such bound. We also show that this upper bound does not hold for most decidable languages, so \(\leq^{\rm P/poly}_{\rm T}\)-hard languages are unusually simple.

This research was supported in part by Spanish Government MEC project TIC 2002-04019-C03-03.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambos-Spies, K., Merkle, W., Reimann, J., Stephan, F.: Hausdorff dimension in exponential time. In: Proceedings of the 16th IEEE Conference on Computational Complexity, pp. 210–217 (2001)

    Google Scholar 

  2. Ambos-Spies, K., Neis, H.-C., Terwijn, S.A.: Genericity and measure for exponential time. Theoretical Computer Science 168(1), 3–19 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 632–643. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Balcázar, J.L., Book, R.V.: Sets with small generalized Kolmogorov complexity. Acta Informatica 23, 679–688 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buhrman, H., van Melkebeek, D.: Hard sets are hard to find. Journal of Computer and System Sciences 59(2), 327–345 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hartmanis, J.: Generalized Kolmogorov complexity and the structure of feasible computations. In: Proceedings of the 24th IEEE Symposium on the Foundations of Computer Science, pp. 439–445 (1983)

    Google Scholar 

  7. Hitchcock, J.M.: Effective Fractal Dimension: Foundations and Applications. PhD thesis, Iowa State University (2003)

    Google Scholar 

  8. Hitchcock, J.M.: Small spans in scaled dimension. In: Proceedings of the 19th IEEE Conference on Computational Complexity (2004) (to appear)

    Google Scholar 

  9. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Scaled dimension and nonuniform complexity. Journal of Computer and System Sciences (to appear), Preliminary version appeared in Proceedings of the 30th International Colloquium on Automata, Languages, and Programming, pp. 278–290 (2003)

    Google Scholar 

  10. Hitchcock, J.M., Vinodchandran, N.V.: Dimension, entropy rates, and compression. In: Proceedings of the 19th IEEE Conference on Computational Complexity (2004) (to appear)

    Google Scholar 

  11. Hitchcock, J.M., Mayordomo, E.: Base invariance of feasible dimension. Manuscript (2003)

    Google Scholar 

  12. Huynh, D.T.: Resource-bounded Kolmogorov complexity of hard languages. In: Selman, A.L. (ed.) Structure in Complexity Theory. LNCS, vol. 223, pp. 184–195. Springer, Heidelberg (1986)

    Google Scholar 

  13. Juedes, D.W., Lutz, J.H.: The complexity and distribution of hard problems. SIAM Journal on Computing 24(2), 279–295 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Juedes, D.W., Lutz, J.H.: Completeness and weak completeness under polynomial-size circuits. Information and Computation 125(1), 13–31 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kolmogorov, A.N.: Three approaches to the quantitative definition of ‘information’. Problems of Information Transmission 1, 1–7 (1965)

    Google Scholar 

  16. Levin, L.A.: Randomness conservation inequalities; information and independence in mathematical theories. Information and Control 61, 15–37 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  18. Lindner, W.: On the polynomial time bounded measure of one-truth-table degrees and p-selectivity (1993), Diplomarbeit, Technische Universität Berlin

    Google Scholar 

  19. Longpré, L.: Resource Bounded Kolmogorov Complexity, a Link Between Computational Complexity and Information Theory. PhD thesis, Cornell University (1986) Technical Report TR-86-776

    Google Scholar 

  20. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44(2), 220–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32, 1236–1259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sipser, M.: A complexity-theoretic approach to randomness. In: Proceedings of the 15th ACM Symposium on Theory of Computing, pp. 330–335 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hitchcock, J.M., López-Valdés, M., Mayordomo, E. (2004). Scaled Dimension and the Kolmogorov Complexity of Turing-Hard Sets. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds) Mathematical Foundations of Computer Science 2004. MFCS 2004. Lecture Notes in Computer Science, vol 3153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28629-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28629-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22823-3

  • Online ISBN: 978-3-540-28629-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics