Skip to main content

Code Flexibility and Program Efficiency by Genericity: Improving Cgal ’s Arrangements

  • Conference paper
Algorithms – ESA 2004 (ESA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3221))

Included in the following conference series:

Abstract

Arrangements of planar curves are fundamental structures in computational geometry. We describe the recent developments in the arrangement package of Cgal, the Computational Geometry Algorithms Library, making it easier to use, to extend and to adapt to a variety of applications. This improved flexibility of the code does not come at the expense of efficiency as we mainly use generic-programming techniques, which make dexterous use of the compilation process. To the contrary, we expedited key operations as we demonstrate by experiments.

This work has been supported in part by the IST Programs of the EU as Shared-cost RTD (FET Open) Projects under Contract No IST-2000-26473 (ECG — Effective Computational Geometry for Curves and Surfaces) and No IST-2001-39250 (MOVIE — Motion Planning in Virtual Environments), by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (Center for Geometric Computing and its Applications), and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Cgal project homepage, http://www.cgal.org/

  2. The Core library homepage, http://www.cs.nyu.edu/exact/core/

  3. The Exacus homepage, http://www.mpi-sb.mpg.de/projects/EXACUS/

  4. Generic programming techniques, http://www.boost.org/more/generic_programming.html

  5. The GNU MP bignum library, http://www.swox.com/gmp/

  6. The Leda homepage, http://www.algorithmic-solutions.com/enleda.htm

  7. Cohen-Or, D., Lev-Yehudi, S., Karol, A., Tal, A.: Inner-cover of non-convex shapes. International Journal on Shape Modeling 9(2), 223–238 (2003)

    Article  MATH  Google Scholar 

  8. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  9. Devillers, O., Fronville, A., Mourrain, B., Teillaud, M.: Algebraic methods and arithmetic filtering for exact predicates on circle arcs. Comput. Geom. Theory Appl. 22(1-3), 119–142 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Duc, D.A., Ha, N.D., Hang, L.T.: Proposing a model to store and a method to edit spatial data in topological maps. Technical report, Ho Chi Minh University of Natural Sciences, Ho Chi Minh City, Vietnam (2001)

    Google Scholar 

  11. Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S.: On the design of Cgal, the Computational Geometry Algorithms Library. Software — Practice and Experience 30, 1167–1202 (2000)

    Article  MATH  Google Scholar 

  12. Flato, E., Halperin, D., Hanniel, I., Nechushtan, O., Ezra, E.: The design and implementation of planar maps in Cgal. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 154–168. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Fogel, E., et al.: An empirical comparison of software for constructing arrangements of curved arcs. Technical Report ECG-TR-361200-01, Tel-Aviv Univ. (2004)

    Google Scholar 

  14. Gerkey, B.: Visibility-based pursuit-evasion for searchers with limited field of view. In: Presented in the 2nd Cgal User Workshop (2004)

    Google Scholar 

  15. Halperin, D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 24, 2nd edn., pp. 529–562. Chapman & Hall/CRC (2004)

    Google Scholar 

  16. Hanniel, I.: The design and implementation of planar arrangements of curves in Cgal. M.Sc. thesis, School of Computer Science, Tel Aviv University (2000)

    Google Scholar 

  17. Hanniel, I., Halperin, D.: Two-dimensional arrangements in Cgal and adaptive point location for parametric curves. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 171–182. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Hert, S., Hoffmann, M., Kettner, L., Pion, S., Seel, M.: An adaptable and extensible geometry kernel. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 79–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Hirsch, S., Halperin, D.: Hybrid motion planning: Coordinating two discs moving among polygonal obstacles in the plane. In: Boissonnat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V, pp. 239–255. Springer, Heidelberg (2003)

    Google Scholar 

  20. Kettner, L.: Using generic programming for designing a data structure for polyhedral surfaces. Comput. Geom. Theory Appl. 13, 65–90 (1999)

    MATH  Google Scholar 

  21. Keyser, J., Culver, T., Manocha, D., Krishnan, S.: Mapc: a library for efficient manipulation of algebraic points and curves. In: Proc. 15th Annu. ACM Sympos. Comput. Geom., pp. 360–369 (1999), http://www.cs.unc.edu/~geom/MAPC/

  22. Mehlhorn, K., Näher, S.: Leda: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  23. Myers, N.: Traits: A new and useful template technique. C++ Gems 17 (1995)

    Google Scholar 

  24. Rogol, V.: Maximizing the area of an axially-symmetric polygon inscribed by a simple polygon. Master’s thesis, Technion, Haifa, Israel (2003)

    Google Scholar 

  25. Schirra, S.: Robustness and precision issues in geometric computation. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 597–632. Elsevier Science Publishers B.V, North-Holland (1999)

    Google Scholar 

  26. Wein, R.: High-level filtering for arrangements of conic arcs. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 884–895. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fogel, E., Wein, R., Halperin, D. (2004). Code Flexibility and Program Efficiency by Genericity: Improving Cgal ’s Arrangements. In: Albers, S., Radzik, T. (eds) Algorithms – ESA 2004. ESA 2004. Lecture Notes in Computer Science, vol 3221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30140-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30140-0_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23025-0

  • Online ISBN: 978-3-540-30140-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics