Skip to main content

Proving and Constraint Solving in Computational Origami

  • Conference paper
Artificial Intelligence and Symbolic Computation (AISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3249))

Abstract

Origami (paper folding) has a long tradition in Japan’s culture and education. We are developing a computational origami system, based on symbolic computation system Mathematica, for performing and reasoning about origami on the computer. This system is based on the implementation of the six fundamental origami folding steps (origami axioms) formulated by Huzita. In this paper, we show how our system performs origami folds by constraint solving, visualizes each step of origami construction, and automatically proves general theorems on the result of origami construction using algebraic methods. We illustrate this by a simple example of trisecting an angle by origami. The trisection of an angle is known to be impossible by means of a ruler and a compass. The entire process of computational origami shows nontrivial combination of symbolic constraint solving, theorem proving and graphical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems (An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations). Aequationes mathematicae 4/3, 374–383 (1970); (English translation in Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications, Proceedings of the International Conference “33 Years of Gröbner Bases”, Research Institute for Symbolic Computation, Johannes Kepler University, Austria. London Mathematical Society Lecture Note Series, vol. 251, pp. 535 –545. Cambridge University Press, Cambridge (1998)

    Article  MathSciNet  Google Scholar 

  2. Buchberger, B., Dupre, C., Jebelean, T., Kriftner, F., Nakagawa, K., Vasaru, D., Windsteiger, W.: The Theorema Project: A Progress Report. In: Kerber, M., Kohlhase, M. (eds.) Symbolic Computation and Automated Reasoning (Proceedings of CALCULEMUS 2000, Symposium on the Integration of Symbolic Computation and Mechanized Reasoning, St. Andrews, Scotland, August 6-7, pp. 98–113. A.K. Peters Publishing Co., Natick (2000)

    Google Scholar 

  3. Buchberger, B., Ida, T.: Origami Theorem Proving, SFB Scientific Computing Technical Report 2003-23-Oct, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria (2003)

    Google Scholar 

  4. Chen, T.L.: Proof of the Impossibility of Trisecting an Angle with Euclidean Tools. Mathematics Magazine 39, 239–241 (1966)

    Article  MATH  Google Scholar 

  5. Fushimi, K.: Science of Origami, a supplement to Saiensu, p. 8 (October 1980) (in Japanese)

    Google Scholar 

  6. Geretschläger, R.: Geometric Constructions in Origami (in Japanese, translation by Hidetoshi Fukagawa), Morikita Publishing Co. (2002)

    Google Scholar 

  7. Haga, K.: Origamics Part I: Fold a Square Piece of Paper and Make Geometrical Figures (in Japanese), Nihon Hyoronsha (1999)

    Google Scholar 

  8. Hull, T.: Origami and Geometric Constructions (1997) , available online at http://web.merrimack.edu/thull/geoconst.html

  9. Huzita, H.: Axiomatic Development of Origami Geometry. In: Proceedings of the First International Meeting of Origami Science and Technology, pp. 143-158 (1989)

    Google Scholar 

  10. Ida, T., Marin, M., Takahashi, H.: Constraint Functional Logic Programming for Origami Construction. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 73–88. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Robu, J.: Automated Geometric Theorem Proving, PhD Thesis, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria (2002)

    Google Scholar 

  12. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ida, T., Ţepeneu, D., Buchberger, B., Robu, J. (2004). Proving and Constraint Solving in Computational Origami. In: Buchberger, B., Campbell, J. (eds) Artificial Intelligence and Symbolic Computation. AISC 2004. Lecture Notes in Computer Science(), vol 3249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30210-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30210-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23212-4

  • Online ISBN: 978-3-540-30210-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics