Skip to main content

Local Search Heuristic for Rigid Protein Docking

  • Conference paper
Algorithms in Bioinformatics (WABI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3240))

Included in the following conference series:

Abstract

We give an algorithm that locally improves the fit between two proteins modeled as space-filling diagrams. The algorithm defines the fit in purely geometric terms and improves by applying a rigid motion to one of the two proteins. Our implementation of the algorithm takes between three and ten seconds and converges with high likelihood to the correct docked configuration, provided it starts at a position away from the correct one by at most 18 degrees of rotation and at most 3.0Å of translation. The speed and convergence radius make this an attractive algorithm to use in combination with a coarse sampling of the six-dimensional space of rigid motions.

All authors are supported by NSF under grant CCR-00-86013. VC, JR, and HE are also supported by a BGT Postdoc Program from Duke University. JR and HE are also supported by NIH under grant R01 GM61822-01. PA is also supported by NSF under grants EIA-01-31905 and CCR-02-04118 and by the U.S.-Israel Binational Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. In: Proc. 20th Ann. Sympos. Comput. Geom., pp. 357–365 (2004)

    Google Scholar 

  2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acid Res 28, 235–242 (2000)

    Article  Google Scholar 

  3. Bespamyatnikh, S., Choi, V., Edelsbrunner, H., Rudolph, J.: Accurate bound protein docking by shape complementarity. Manuscript, Dept. Comput. Sci., Duke Univ., Durham, North Carolina (2003)

    Google Scholar 

  4. Brooks, B.R., Karplus, M.: Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. 80, 3696–3700 (1983)

    Article  Google Scholar 

  5. Camacho, C.J., Vajda, S.: Protein docking along smooth association pathways. Proc. Natl. Acad. Sci. 98, 10636–10641 (2001)

    Article  Google Scholar 

  6. Choi, V., Goyal, N.: A combinatorial shape matching algorithm for rigid protein docking. In: Proc. 15th Ann. Sympos. Combin. Pattern Matching (2004) (to appear)

    Google Scholar 

  7. Elcock, A.H., Sept, D., Mccammon, J.A.: Computer simulation of protein-protein interactions. J. Phys. Chem. 105, 1504–1518 (2001)

    Google Scholar 

  8. Fernandez-Recio, J., Totrov, M., Abagyan, R.: Soft protein-protein docking in internal coordinates. Protein Sci. 11, 280–291 (2002)

    Article  Google Scholar 

  9. Halperin, D., Overmars, M.H.: Spheres, molecules, and hidden surface removal. Comput. Geom. Theory Appl. 11, 83–102 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Halperin, B., Ma, H., Wolfson, R.: Nussinov. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47, 409–443 (2002)

    Article  Google Scholar 

  11. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Amer. A 4, 629–642 (1987)

    Article  Google Scholar 

  12. Jacobs, D.J., Rader, A.J., Kuhn, L.A., Thorpe, M.F.: Protein flexibility predictions using graph theory. Proteins 44, 150–165 (2001)

    Article  Google Scholar 

  13. Janin, J., Wodak, S.J.: The structural basis of macromolecular recognition. Adv. Protein Chem. 61, 9–73 (2002)

    Article  Google Scholar 

  14. Jiang, F., Kim, S.-H.: Soft-docking”: matching of molecular surface cubes. J. Mol. Biol. 219, 79–102 (1991)

    Article  Google Scholar 

  15. Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A 34, 827–828 (1978)

    Article  Google Scholar 

  16. Lorber, D.M., Udo, M.K., Shoichet, B.K.: Protein-protein docking with multiple residue conformations and residue substitutions. Protein Sci. 11, 1393–1408 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, V., Agarwal, P.K., Edelsbrunner, H., Rudolph, J. (2004). Local Search Heuristic for Rigid Protein Docking. In: Jonassen, I., Kim, J. (eds) Algorithms in Bioinformatics. WABI 2004. Lecture Notes in Computer Science(), vol 3240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30219-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30219-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23018-2

  • Online ISBN: 978-3-540-30219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics