Skip to main content

Complexity of Linear Connectivity Problems in Directed Hypergraphs

  • Conference paper
FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3328))

Abstract

We introduce a notion of linear hyperconnection (formally denoted L-hyperpath) between nodes in a directed hypergraph and relate this notion to existing notions of hyperpaths in directed hypergraphs. We observe that many interesting questions in problem domains such as secret transfer protocols, routing in packet filtered networks, and propositional satisfiability are basically questions about existence of L-hyperpaths or about cyclomatic number of directed hypergraphs w.r.t. L-hypercycles (the minimum number of hyperedges that need to be deleted to make a directed hypergraph free of L-hypercycles). We prove that the L-hyperpath existence problem, the cyclomatic number problem, the minimum cyclomatic set problem, and the minimal cyclomatic set problem are each complete for a different level (respectively, NP, \({\it \Sigma}^{p}_{2}\), \({\it \Pi}^{p}_{2}\), and DP) of the polynomial hierarchy.

Supported in part by grants NSF-INT-9815095 and NSF-CCF-0426761.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, B.: On the cyclomatic number of a hypergraph. Discrete Mathematics 27, 111–116 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alimonti, P., Feuerstein, E., Nanni, U.: Linear time algorithms for liveness and boundedness in conflict-free Petri nets. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 1–14. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  3. Ausiello, G., D’Atri, A., Saccá, D.: Graph algorithms for functional dependency manipulation. Journal of the ACM 30, 752–766 (1983)

    Article  MATH  Google Scholar 

  4. Ausiello, G., D’Atri, A., Saccá, D.: Minimal representation of directed hypergraphs. SIAM Journal on Computing 15, 418–431 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ausiello, G., Franciosa, P., Frigioni, D.: Directed hypergraphs: Problems, algorithmic results, and a novel decremental approach. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 312–328. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Ausiello, G., Giaccio, R.: On-line algorithms for satisfiability formulae with uncertainty. Theoretical Computer Science 171, 3–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ausiello, G., Giaccio, R., Italiano, G., Nanni, U.: Optimal traversal of directed hypergraphs (Manuscript 1997)

    Google Scholar 

  8. Ausiello, G., Italiano, G., Nanni, U.: Hypergraph traversal revisited: Cost measures and dynamic algorithms. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 1–16. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  10. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Applied Mathematics 42, 177–201 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gallo, G., Rago, G.: A hypergraph approach to logical inference for datalog formulae. Technical Report 28/90, Dip. di Informatica, Univ. of Pisa, Italy (1990)

    Google Scholar 

  12. Gallo, G., Scutella, M.: Directed hypergraphs as a modelling paradigm. Technical Report TR-99-02, Dipartimento di Informatica (February 1999)

    Google Scholar 

  13. Galperin, H., Wigderson, A.: Succinct representations of graphs. Information and Control 56(3), 183–198 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  15. Italiano, G., Nanni, U.: On line maintainenance of minimal directed hypergraphs. In: 3rd Italian Conf. on Theoretical Computer Science, pp. 335–349. World Scientific Co., Singapore (1989)

    Google Scholar 

  16. Klein, D., Manning, C.: Parsing and hypergraphs. In: Proceedings of the 7th International Workshop on Parsing Technologies, IWPT 2001(2001)

    Google Scholar 

  17. Knuth, D.: A generalization of Dijkstra’s algorithm. Information Processing Letters 6(1), 1–5 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nguyen, S., Pallottino, S.: Hyperpaths and shortest hyperpaths. Combinatorial Optimization 1403, 258–271 (1989)

    Article  MathSciNet  Google Scholar 

  19. Nielsen, L., Pretolani, D., Andersen, K.: A remark on the definition of a B-hyperpath. Technical report, Department of Operations Research, University of Aarhus (2001)

    Google Scholar 

  20. Nilson, N.: Principles of Artificial Intelligence. Springer, Heidelberg (1982)

    Google Scholar 

  21. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  22. Papadimitriou, C., Yannakakis, M.: A note on succinct representations of graphs. Information and Control 71(3), 181–185 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Petri, C.: Communication with automata. Technical Report Supplement 1 to Tech. Report RADC-TR-65-377,1, Univ. of Bonn (1962)

    Google Scholar 

  24. Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the Shortest Path problem. Journal of Algorithms 21, 267–305 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tantau, T.: A note on the complexity of the reachability problem for tournaments. In: ECCCTR: Electronic Colloquium on Computational Complexity (2001)

    Google Scholar 

  26. Temkin, O., Zeigarnik, A., Bonchev, D.: Chemical Reaction Networks: A Graph-Theoretical Approach. CRC Press, Boca Raton (1996)

    Google Scholar 

  27. Thakur, M., Tripathi, R.: Complexity of linear connectivity problems in directed hypergraphs. Technical Report TR814, Department of Computer Science, University of Rochester (September 2003)

    Google Scholar 

  28. Ullman, J.: Principles of Database Systems. Computer Science Press (1982)

    Google Scholar 

  29. Wagner, K.: The complexity of combinatorial problems with succinct input representations. Acta Informatica 23, 325–356 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zeigarnik, A.: On hypercycles and hypercircuits in hypergraphs. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 51 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thakur, M., Tripathi, R. (2004). Complexity of Linear Connectivity Problems in Directed Hypergraphs. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30538-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24058-7

  • Online ISBN: 978-3-540-30538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics