Skip to main content

Efficient Key Encapsulation to Multiple Parties

  • Conference paper
Security in Communication Networks (SCN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3352))

Included in the following conference series:

Abstract

We present the notion of an mKEM, which is a Key Encapsulation Mechanism (KEM) which takes multiple public keys as input. This has applications where one wishes to encrypt a single large document to a set of multiple recipients, as when one sends an encrypted email to more than one person. We present a security definition and show that the naive approach to implementing an mKEM is secure under this definition. We then go on to present a more efficient construction of an mKEM, which is secure in the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An encryption scheme based on the Diffie–Hellman problem. Preprint (1999)

    Google Scholar 

  2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in the multi-user setting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen-ciphertext attack. Preprint (2002)

    Google Scholar 

  5. Shoup, V.: A proposal for the ISO standard for public-key encryption (version 2.0). Preprint (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smart, N.P. (2005). Efficient Key Encapsulation to Multiple Parties. In: Blundo, C., Cimato, S. (eds) Security in Communication Networks. SCN 2004. Lecture Notes in Computer Science, vol 3352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30598-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30598-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24301-4

  • Online ISBN: 978-3-540-30598-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics