Skip to main content

Experimentelle Hilfsmittel des Spektroskopikers

  • Chapter
Laserspektroskopie
  • 7374 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 4

  1. R. Kingslake, B.J. Thompson (eds.): Applied Optics and Optical Engineering, Vols. I–X (Academic, New York 1969–1985)

    Google Scholar 

  2. E. Wolf (ed.): Progress in Optics, Vols. 1–47 (North-Holland, Amsterdam 1961–2007)

    Google Scholar 

  3. R. Guenther: Modern Optics (Wiley, New York 1990) G. Litfin: Technische Optik in der Praxis, 3. Aufl. (Springer, Heidelberg 2006)

    Google Scholar 

  4. A.P. Thorne: Spectrophysics (Chapman and Hall, London 1974) A.P. Thorne, U. Litzèn, S. Johansson: Spectrophysics (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  5. St.G. Lipson, H.S. Lipson, D.S. Tannhausen: Optik (Springer, Berlin, Heidelberg 1997) D. Meschede: Optik, Licht und Laser (Teubner, Stuttgart 1999)

    MATH  Google Scholar 

  6. A.B. Schafer, L.R. Megil, L. Dropleman: Optimization of the Czerny-Turner Spectrometer. J. Opt. Soc. Am. 54, 879 (1964)

    ADS  Google Scholar 

  7. Bergmann-Schäfer: Lehrbuch der Experimentalphysik, Bd. III: Optik, 9. Aufl. (De Gruyter, Berlin 1993)

    Google Scholar 

  8. S.P. Davis: Diffraction Grating Spectrographs (Holt, Rinehard and Winston, New York 1970)

    Google Scholar 

  9. Handbook of Diffraction Gratings, Ruled and Holographic (Jobin Yvon Optical Systems, Metuchen, NJ 1970); Bausch and Lomb Diffraction Grating Handbook (Bausch and Lomb, Rochester, NY 1970)

    Google Scholar 

  10. G.W. Stroke: Diffraction gratings, in Handbuch der Physik, Bd. 29, Hrsg. S. Flügge (Springer, Berlin, Heidelberg 1967)

    Google Scholar 

  11. G. Schmahl, D. Rudolph: Holographic diffraction gratings. Progr. Optics XIV, 195 (North-Holland, Amsterdam 1977) E. Loewen: Diffraction gratings: Ruled and holographic. Applied Optics and Optical Engineering IX (Academic, New York 1980)

    Google Scholar 

  12. E. Hecht: Optik (Oldenbourg, München 2001)

    Google Scholar 

  13. S. Tolansky: An Introduction to Interferometry (Longman, London 1973) C. Lämmerzahl, C.W. Ewerit, F.W. Hehl (eds.): Gyros, Clocks, Interferometers, Lecture Notes Phys. (Springer, Heidelberg 2001)

    Google Scholar 

  14. J. Dyson: Interferometry (Machinery Publ., Brighton 1970) G. Hernandez: Fabry-Perot Interferometer (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  15. M. Francon: Optical Interferometry (Academic, New York 1966)

    Google Scholar 

  16. K.M. Baird, G.R. Hanes: Interferometers, in [Lit. 4.2, Bd. IV, S. 309–362]

    Google Scholar 

  17. J.M. Vaughan: The Fabry-Perot Interferometer (Hilger, Bristol 1989)

    Google Scholar 

  18. P. Harihanan, B.C. Sanders: Quantum phenomena in optical interferometry, in [Lit. 4.2, Vol. XXXVI, S. 4 (1996)] J. Schmider: Advanced evalution techniques in interferometers, in [Lit. 4.2, Vol. XXVIII, S. 271 (1990)] K.S. Repasky, L.E. Watson, J.L. Carlsten: High Finesse Interferometers. Appl. Opt. 34, 2615 (1995)

    Google Scholar 

  19. H.K.V. Lotsch: The Fabry-Perot resonator. Optik 28, 65–75, 328–345, 555–574 (1968/69); and ibid 29, 622–623, 130–145, 622–623 (1969)

    Google Scholar 

  20. R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic, New York 1972)

    Google Scholar 

  21. P. Griffiths, I.A. deHaseth: Fourier Transform Infrared Spectroscopy (Wiley, New York 1986)

    Google Scholar 

  22. H. Welling, B. Wellegehausen: High resolution Michelson interferometer for spectral investigations of lasers. Appl. Opt. 11, 1986 (1972)

    Google Scholar 

  23. W. Winkler: Ein Laser-Interferometer als Gravitationswellendetektor. Physik in unserer Zeit 16, 138 (September 1985)

    Article  ADS  Google Scholar 

  24. T.M. Niebauer, A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, K. Danzmann: Pulsar searching using data compression with the Garching gravitational wave detector. Phys. Rev. D 47, 3106 (1993) H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin: Conversion of conventional gravitational-wave interferometers into QND-interferometers. Phys. Rev. D65, 84 (2002)

    Article  ADS  Google Scholar 

  25. Siehe z. B. W. Demtröder: Experimentalphysik II, 4. Aufl. (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  26. W.R. Leeb: Losses introduced by tilting intracavity etalons. Appl. Phys. 6, 267 (1975)

    Article  ADS  Google Scholar 

  27. M. Hercher: Tilted etalons in laser resonators. Appl. Opt. 8, 1103 (1969)

    ADS  Google Scholar 

  28. W. Demtröder, M. Stock: Molecular constants and potential curves of Na2 from laser-induced fluourescence. J. Mol. Spectrosc. 55, 476 (1975)

    Article  ADS  Google Scholar 

  29. P. Connes: L’étalon de Fabry-Pérot sphérique. Phys. Radium 19, 262 (1958) und in Quantum Electronics and Coherent Light, ed. by P.H. Miles (Academic, New York 1964) p. 198 ff

    Google Scholar 

  30. M. Hercher: The spherical mirror Fabry-Perot interferometer. Appl. Opt. 7, 951 (1968) J.R. Johnson: A high resolution scanning confocal interferometer. Appl. Opt. 7, 1061 (1968)

    ADS  Google Scholar 

  31. H.K.V. Lotsch: The confocal resonator System. Optik 30, 1–14, 181–201, 217–233, 563–576 (1969/70)

    Google Scholar 

  32. A. Thelen: Design of Optical Interference Coatings (McGraw-Hill, New York 1988) H.A. McLeod: Thin Film Optical Filters, 3rd edn. (Inst. of Physics Publ., London 2001)

    Google Scholar 

  33. V.R. Costich: Multilayer dielectric coatings, in Handbook of Lasers, ed. by R.J. Pressley (Chemical Rubber Company, Cleveland, Ohio 1972)

    Google Scholar 

  34. S. Penselin, A. Steudel: Fabry-Perot Verspiegelungen aus dielektrischen Vielfachschichten. Z. Physik 142, 21 (1955)

    Article  ADS  Google Scholar 

  35. R.E. Hummel, K.H. Guenther (eds.): Optical Properties, Vol. I: Thin Films for Optical Coatings (CRC, Cleveland, OH 1995)

    Google Scholar 

  36. A. Musset, A. Thelen: Multilayer antireflection coatings. Progress in Optics III, 203 (North-Holland, Amsterdam 1970)

    Google Scholar 

  37. H.K. Pulker: Optical Interference Coatings (Springer, Heidelberg 2003); siehe ferner Informationsschriften optischer Filter-Hersteller

    Google Scholar 

  38. A. Yariv, P. Yeh: Optical Waves in Crystals (Wiley Interscience, New York 1984) Ch. Weißmantel, C. Hamann: Grundlagen der Festkörperphysik (Springer, Berlin, Heidelberg 1979) S. 672f und 623ff

    Google Scholar 

  39. L.R. Fork, D.R. Herriot, H. Kogelnik: A scanning spherical minor interferometer for spectral analysis of laser radiation. Appl. Opt. 3, 1471 (1964)

    ADS  Google Scholar 

  40. J.W. Evans: The birefringent filter. J. Opt. Soc. Am. 39, 229 (1949)

    ADS  Google Scholar 

  41. M. Francon, S. Mullik: Polarization lnterferometers (Wiley, Chichester 1971) P.L. Polavarapi: Principles and Applications of Polarization Division Interferometers (Wiley, New York 1997)

    Google Scholar 

  42. A.L. Bloom: Modes of a laser resonator containing tilted birefringent plates. J. Opt. Soc. Am. 64, 447 (1974)

    ADS  Google Scholar 

  43. B.H. Billings: The electro-optic effect in uniaxial crystals of the type XH2PO4. J. Opt. Soc. Am. 39, 797 (1949)

    ADS  Google Scholar 

  44. B. Zwicker, P. Scherrer: Elektrooptische Eigenschaften der Seignette-elektrischen Kristalle KH2PO4 und KD2PO4. Helv. Phys. Acta 17, 346 (1944)

    Google Scholar 

  45. H. Walther, J.L. Hall: Tunable Dye Laser with Narrow Spectral Output. Appl. Phys. Lett. 17, 239 (1970)

    Article  ADS  Google Scholar 

  46. J.J. Snyder: Laser wavelength meters. Laser Focus 18, 55 (May 1982)

    Google Scholar 

  47. J.L. Hall, S.A. Lee: Interferometric real time display of cw dye laser wavelength with sub-Doppler accuracy. Appl. Phys. Lett. 29 367 (1976)

    Article  ADS  Google Scholar 

  48. F. Kowalski, R.E. Teets, W. Demtröder, A.L. Schawlow: An improved wavemeter for cw lasers. J. Opt. Soc. Am. 68, 1611 (1978)

    ADS  Google Scholar 

  49. H.P. Layer, R.D. Deslattes, W.G. Schweitzer Jr.: Laser wavelength comparison with high resolution interferometry. Appl. Opt. 15, 734 (1976)

    ADS  Google Scholar 

  50. R. Best: Theorie und Anwendungen des Phase-Locked Loops (AT-Verlag, Stuttgart 1976)

    Google Scholar 

  51. A. deMarchi (ed.): Frequency Standards and Metrology (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  52. F. Bayer-Helms: Neudefinition der Basiseinheit Meter im Jahre 1983. Phys. Bl. 39, 307 (1983)

    Google Scholar 

  53. W.G. Schweizer Jr., E.G. Kessler Jr., R.D. Deslattes, H.P. Layer, J.R. Whetstone: Description, performance and wavelengths of iodine stabilized lasers. Appl. Opt. 12, 2927 (1973)

    ADS  Google Scholar 

  54. B. Edlen: Dispersion of Standard Air. J. Opt. Soc. Am. 43, 339 (1953)

    Article  ADS  Google Scholar 

  55. J.C. Owens: Optical Refractive Index of Air: Dependence on pressure, temperature and composition. Appl. Opt. 6, 51 (1967)

    ADS  Google Scholar 

  56. R. Castell, W. Demtröder, A. Fischer, R. Kullmer, K. Wickert: The accuracy of laser wavelength meters. Appl. Phys. B 38, 1–10 (1985)

    Article  ADS  Google Scholar 

  57. J. Viqué, B. Girard: A systematic error of Michelson’s type lambdameter. Rev. Phys. Appl. 21, 463 (1986)

    Google Scholar 

  58. J.J. Snyder: An ultrahigh resolution frequency meter. Proc. 35th Ann. Freq. Control USAE-RADCOM (May 1981); Appl. Opt. 19, 1223 (1980)

    ADS  Google Scholar 

  59. Burleigh Instruments, Inc. (U.K.)

    Google Scholar 

  60. P.J. Fox, R.E. Scholten, M.R. Walkiewicz, R.E. Drullinger: A reliable compact and low cost Michelson wavemeter for laser wavelength measurements. Am. J. Phys. 67, 624 (1999)

    Article  ADS  Google Scholar 

  61. P. Juncar, J. Pinard: Instrument to measure wavenumbers of cw and pulsed laser lines: The sigma meter. Rev. Sci. Instrum. 53, 939 (1982); and Opt. Commun. 14, 438 (1975)

    Article  ADS  Google Scholar 

  62. R.L. Byer, J. Paul, M.D. Duncan: A wavelength meter, in [J.L. Carlsten, Springer Ser. Opt. Sci., Vol. 7 (Springer, Berlin, Heidelberg 1977) Lit. 1.1 III, S. 414]

    Google Scholar 

  63. A. Fischer, R. Kullmer, W. Demtröder: Computer-controlled Fabry-Perot wavemeter. Opt. Commun. 39, 277 (1981)

    Article  ADS  Google Scholar 

  64. N Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya: High precision wavelength meterwith Fabry-Perot optics. Appl. Phys. 25, 311 (1981)

    Article  ADS  Google Scholar 

  65. J.J. Snyder: Fizeau wavemeter. SPIE 288, 258 (1981)

    Google Scholar 

  66. M.B. Morris, T.J. McIllrath, J. Snyder: Fizeau wavemeter for pulsed laser wavelength mea surement. Appl. Opt. 23, 3862 (1984)

    ADS  Google Scholar 

  67. J.L. Gardner: Compact Fizeau wavemeter. Appl. Opt. 24, 3570 (1985)

    ADS  Google Scholar 

  68. Laser2000: High Precision Lambdameter mit 4 Fizeau-Interferometer (Firmenkatalog 2006)

    Google Scholar 

  69. J.L. Gardner: Wavefront curvature in a Fizeau wavemeter. Opt. Lett. 8, 91 (1983)

    ADS  Google Scholar 

  70. W. Kedziersky et al.: A Fizeau-wavemeter with single mode optical fibre coupling. J. Scient. Instrum. 21, 796 (1988)

    Article  ADS  Google Scholar 

  71. P.N. Dennis: Photodetectors (Plenum, New York 1986)

    Google Scholar 

  72. G.H. Rieke: Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge Univ. Press, Cambridge 1994) G.F. Knoll: Radiation detection and measurement, 3rd. edn. (Wiley, New York 2000)

    Google Scholar 

  73. M. Bleicher: Halbleiter-Optoelektronik (Huthig, Heidelberg 1976)

    Google Scholar 

  74. E.L. Dereniak, G.D. Boremann: Infrared Detectors and Systems (Wiley, New York 1996)

    Google Scholar 

  75. K.A. Jones: Optoelektronik (VCH, Weinheim 1992)

    Google Scholar 

  76. T.E. Gough. R.E. Miller, G. Scoles: Infrared laser spectroscopy of molecular beams. Appl. Phys. Lett. 30, 338 (1977)

    Article  ADS  Google Scholar 

  77. D. Bassi, A. Boschetti, M. Scotoni, M. Zen: Molecular beam diagnostics by means of fast superconducting bolometer. Appl. Phys. B 26, 99 (1981)

    Article  ADS  Google Scholar 

  78. J. Clarke, P.L. Richards, N.H. Yeh: Composite superconducting transition edge bolometer. Appl. Phys. Lett. B 30, 664 (1977)

    Article  ADS  Google Scholar 

  79. B. Tiffany: Introduction and review of pyroelectric detectors. SPIE Proc. 62, 153 (1975)

    ADS  Google Scholar 

  80. E.H. Putly: Pyroelectric detectors, in Submillimeter Waves, ed. by J. Fox (Polytechnic Press, New York 1971) p. 267

    Google Scholar 

  81. C.B. Roundy, R.L. Byer: Subnanosecond pyroelectric detector. Appl. Phys. Lett. 21, 10 (1972); and Opt. Commun. 10, 374 (1974)

    Article  Google Scholar 

  82. R. Paul: Optoelektronische Halbleiterbauelemente (Teubner, Stuttgart 1992)

    Google Scholar 

  83. F. Capasso (ed.): Physics of Quantum Electron Devices, Springer Ser. Electron. Photon., Vol. 28 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  84. Ch.H. Lee (ed): Picosecond Optoelectronic Devices (Academic, New York 1984)

    Google Scholar 

  85. K. Ebeling: Integrierte Optoelektronik (Springer, Berlin, Heidelberg 1989) S. Radovanovic, A.J. Annema, B. Nauta: High-Speed Photodiodes in Standard CMOS Technology (Springer, Heidelberg 2006)

    Google Scholar 

  86. E. Sakuma, K.M. Evenson: Characteristics of tungsten nickel point contact diodes used as a laser harmonic generation mixers. IEEE J. QE-10, 599 (1974)

    Article  Google Scholar 

  87. H.U. Daniel, B. Maurer, M. Steiner: A broadband Schottky point contact mixer for visible-light and microwave harmonics. Appl. Phys. B 30, 189 (1983)

    Article  ADS  Google Scholar 

  88. H.P Rösser, R.V. Titz, G.W. Schwab, M.F. Kimmitt: Current-frequency characteristics of submicron GaAs Schottky barrier diodes with femtofarad capacitors. J. Appl. Phys. 72, 3194 (1992)

    Article  ADS  Google Scholar 

  89. R.B. Billborn, J.V. Sweedler, P.M. Epperson, M.B. Denton: Charge transfer device detectors for optical spectroscopy. Appl. Spectrosc. 41, 1114 (1987) G.C. Holst: CCD Arrays, Cameras and Displays, 2nd ed. (SPIE Int. Soc. for Opt. Eng., Orlando, Fl. 2002)

    Article  ADS  Google Scholar 

  90. J.D. Rees, M.P. Givens: Variation of time of flight of electrons through a photomultiplier. J. Opt. Soc. Am. 56, 93 (1966)

    ADS  Google Scholar 

  91. J.S. Eshev, G.A. Amtypas, J. Edgecumbe: High quantum efficiency photoemission from an InGaAs photodiode. Appl. Phys. Lett. 29, 153 (1976)

    Article  ADS  Google Scholar 

  92. R.L. Bell: Negative Electron Affinity Devices (Clarendon, Oxford 1973)

    Google Scholar 

  93. W.E. Spicer: Negative affininty 3–5 photocathodes, their physics and technology. Appl. Phys. 12, 115 (1977)

    Article  ADS  Google Scholar 

  94. A. van der Ziel: Noise in Measurements (Wiley, New York 1976)

    Google Scholar 

  95. H. Bittel, L. Storm: Rauschen (Springer, Berlin, Heidelberg 1971)

    Google Scholar 

  96. T.H. Wilmshurst: Signal Recovery from Noise in Electronics Instrumentation (Hilger, Bristol 1990)

    Google Scholar 

  97. A.T. Young: Undesirable effects of cooling photomultipliers. Rev. Sci. Instrum. 38, 1336 (1967)

    Article  ADS  Google Scholar 

  98. R.E. Engstrom: Photomultiplier handbook (RCA solid state division, 1980) Hamamatsu: Photomultiplier Tubes: Basis and Application, 2nd ed. (Hamamatsu Photonics, 1999)

    Google Scholar 

  99. B.F.A. Saleh, M.C. Teich: Fundamentals of Photonics (Wiley, New York 1991)

    Google Scholar 

  100. D.V. O’Connor, D. Phillips: Time Correlated Photon Counting (Academic, New York 1984)

    Google Scholar 

  101. B. Saleh: Photoelectron Statistics, Springer Ser. Opt. Sci., Vol. 6 (Springer, Berlin, Heidelberg 1978)

    Google Scholar 

  102. P.W. Kruse: The photon detection process, in: J.J. Keyes (ed.): Optical and Infrared Detectors, 2nd ed. (Springer, Heidelberg 1977)

    Google Scholar 

  103. D. Dragoman, M. Dragoman: Advanced Optical Devices (Springer, Heidelberg 1999) C.B. Johnson (ed.): Image Intensifiers and Applications I + II (SPIE Int. Soc. for Opt. Eng., Vol 3434, Bellingham, WA, Oct. 1998)

    Google Scholar 

  104. C.B. Johnson (ed.): Image Intensifiers and Applications (SPIE Int. Soc. for Opt. Eng., Vol 4128, Bellingham, WA, 2000)

    Google Scholar 

  105. Siehe Informationsbroschüren: a) Photon-counting Image Acquisition System (PIAS) von Hamamatsu, b) OMA III von EG & G Princeton Applied Research, c) OSMA von SI Spectroscopy Instruments GmbH

    Google Scholar 

  106. W. Göpel, J. Hesse, J.N. Zemel (eds.): Sensors, A Comprehensive Survey, Vol. 6: Optical Sensors (VHC, Weinheim 1992)

    Google Scholar 

  107. D.F. Barbe (ed.): Charge-Coupled Devices, Topics Appl. Phys., Vol. 38 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  108. Shuhong Li et al.: A new optical oscilloscope. Rev. Sci. Instrum. 69, 1253 (1998)

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Experimentelle Hilfsmittel des Spektroskopikers. In: Laserspektroskopie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33793-5_4

Download citation

Publish with us

Policies and ethics