Skip to main content

Water Activity

  • Chapter
Food Physics

Abstract

Water is an important component of nearly all food materials, and plays a decisive role in dictating the physical properties, quality and microbial, chemical and biochemical degradation of the food material [1]. For most food materials, unless the moisture content is reduced below 50% (wet basis), much of the water content is freely available to behave physically as pure water with properties such as vapor pressure equal to pure water. As moisture content is lowered further, a point will be reached at which the water becomes less active in that it cannot act physically or chemically as pure water. For example, it cannot freeze or act as a solvent or reactant. In this state, it is considered to be bound water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Lewicki PP (2004) Water as the determinant of food engineering properties. A review. J Food Engineering, 61:483–495

    Article  Google Scholar 

  2. Gregg SJ, Sing KSW (1982) Adsorption, Surface Area and Porosity. Academic Press, London

    Google Scholar 

  3. Luy B (1991) Vakuum Wirbelschicht. Dissertation, Universität Basel

    Google Scholar 

  4. Korte F (ed) (1973) Methodicum chimicum Bd 1 Teil 2. Thieme, Stuttgart

    Google Scholar 

  5. Brunauer S, Emmet PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  6. Bauer KH, Frömming KH, Führer C (1999) Pharmazeutische Technologie. Deutscher Apotheker Verlag, Stuttgart

    Google Scholar 

  7. Cazier JB, Gekas V (2001) Water activity and its prediction: a review. Intern J Food Properties 4:35

    Article  CAS  Google Scholar 

  8. Iglesias HA, Chirife J (1982) Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components. Academic Press, New York

    Google Scholar 

  9. Nesvadba P, Houska M, Wolf W, Gekas V, Jarvis D, Sadd PA, Johns AI (2004) Database of physical properties of agro-food materials. J Food Engineering 61: 497–503

    Article  Google Scholar 

  10. Taylor AJ (1998) Physical chemistry of flavour. Int J Food Sci Tech 33:53–62

    Article  CAS  Google Scholar 

  11. Atkins PW (1990) Physikalische Chemie. VCH Weinheim

    Google Scholar 

  12. Van den Berg, Bruin S (1981) Water activity and its estimation in food systems. In: Rockland LB, Stewart GF (eds) Water Activity: Influence on Food Quality. Academic Press, New York

    Google Scholar 

  13. Bizot H (1983) in: Jowitt R, Escher F, Hallström B, Meffert HFTh, Spiess WEL, Vos G (1983) Physical Properties of Food. Applied Science Publishers, Barking

    Google Scholar 

  14. Timmermann EO, Chirife J, Iglesias HA (2001) Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J Food Engineering 48:19–31

    Article  Google Scholar 

  15. Isengard HD, Rückold S, Grobecker KH (2001) Water as a source of errors in reference materials. Fresenius J Anal Chem 370:189–193

    Article  Google Scholar 

  16. Labuza Th, University of Minnesota, available online from: http://www.fsci.umn.edu/Ted_Labuza/CV/tplcv.htm [cited 2003-12-24]

    Google Scholar 

  17. Lewicki PP (2000) Raoult’s law based food water sorption isotherm. J Food Engineering 43:31–40

    Article  Google Scholar 

  18. Labuza TP (1971) Kinetics of lipidoxidation in foods. Crit Rev Food Technol 2:355

    Article  Google Scholar 

  19. Troller JA, Christian JHB (1978) in: Water Acivity and Food. Academic Press, New York

    Google Scholar 

  20. Hofer AA (1962) Zur Aufnahmetechnik von Sorptionsisothermen und ihre Anwendung in der Lebensmittelindustrie. Dissertation, Universität Basel

    Google Scholar 

  21. Chirife J, Buera MP (1995) A critical review of some non-equilibrium situations and glass transitions on water activity values of foods in the microbiological growth range. J Food Engineering 25:531–552

    Article  Google Scholar 

  22. Steele RJ (1987) Use of polyols to measure equilibrium relative humidity. Int J Food Sci Technol 22:377–384

    CAS  Google Scholar 

  23. Spiess (1983) in: Jowitt R, Escher F, Hallström B, Meffert HFTh, Spiess WEL, Vos G (1983) Physical Properties of Food. Applied Science Publishers, Barking

    Google Scholar 

  24. Cammenga HK, Gehrich K (2003) Glatt, rau oder klebrig? Zeitschrift für Lebensmittel und Verpackungstechnik (LVT) 48:28

    Google Scholar 

  25. Vázquez G, Chenlo F, Moreira R (2003) Sorption isotherms of lupine at different temperatures. J Food Engineering 60:449–452

    Article  Google Scholar 

  26. McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Engineering 60:157–165

    Article  Google Scholar 

  27. McLaughlin CP, Magee TRA (1998) The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering 35:267–280

    Article  Google Scholar 

  28. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) Water sorption isotherms of starch powders: Part 1: mathematical description of experimental data. J Food Engineering 62:135–142

    Article  Google Scholar 

  29. Iglesias O, Bueno JL (1999) Water agar-agar equilibrium: determination and correlation of sorption isotherms. Int J Food Sci Tech 34:209–216

    Article  CAS  Google Scholar 

  30. Moraga G, Martínez-Navarrete N, Chiralt A (2004) Water sorption isotherms and glass transition in strawberries: influence of pre-treatment. J Food Engineering 62:315–321

    Article  Google Scholar 

  31. Delgado AE, Sun DW (2002) Desorption isotherms and glass transition temperature for chicken meat. J Food Engineering 5:1–8

    Article  Google Scholar 

  32. Hossain MD, Bala BK, Hossain MA, Mondol MRA (2001) Sorption isotherms and heat of sorption of pineapple. J Food Engineering 48,2:103–107

    Article  Google Scholar 

  33. Kaymak-Ertekin F, Sultanoglu M (2001) Moisture sorption isotherm characteristics of peppers. J Food Engineering 47:225–231

    Article  Google Scholar 

  34. Viollaz E, Rovedo CO (1999) Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. J Food Engineering 40:287–292

    Article  Google Scholar 

  35. Rückold S, Grobecker, KH, Isengard, HD (2001) Water as a source of errors in reference materials. Fresenius J Analytical Chemistry 370:189–193.

    Article  Google Scholar 

  36. Czepirski L, Komorowska-Czepirska E, Szymonska J (2005) Adsorptive properties of biobased adsorbents. Adsorption 11:757–761

    Article  Google Scholar 

  37. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National bureau of Standards A: Physics and Chemistry, Vol 81A:89

    Google Scholar 

  38. DINISO 9277 (2003) Determination of the specific surface area of solids by gas adsorption using the BET method, in [101]

    Google Scholar 

  39. Simal S, Femenia A, Castell-Palou A, Rosselló C (2007) Water desorption thermodynamic properties of pineapple. J Food Engineering 80:1293–1301

    Article  Google Scholar 

  40. Guilan Peng, Xiaoguang Chen, Wenfu Wu, Xiujuan Jiang (2007) Modeling of water sorption isotherm for corn starch. J Food Engineering 80:562–567

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Water Activity. In: Food Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34194-9_1

Download citation

Publish with us

Policies and ethics