Skip to main content

LES of Variable Density Bifurcating Jets

  • Conference paper
Complex Effects in Large Eddy Simulations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 56))

Abstract

Three dimensional variable density jets at low Mach number conditions are analyzed by means of Large Eddy Simulations. The LES equations were derived starting from a low Mach number approximation of the continuity, Navier- Stokes and energy equations. The numerical method is based on the high-order compact/Fourier pseudospectral schemes. The superposition of axial and flapping (helical) periodic disturbances at the jet outlet, forced the jet to bifurcate at certain excitation frequency. The LES calculations for non-isothermal case revealed that, for the case when the jet density is lower in comparison with the ambient fluid, the excitation frequency needed for bifurcation is higher than for the isothermal jet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A. Monkewitz and K.D. Sohn. Absolute instability in hot jets. AIAA Journal, 26(8):911–916, 1988.

    Google Scholar 

  2. P.A. Monkewitz, D.W. Bechert, B. Bariskow, and B. Lehmann. Selfexcited oscillations and mixing in a heated round jet. Journal of Fluid Mechanics, 213:611–639, 1990.

    Article  Google Scholar 

  3. S. Russ and P.J. Strykowski. Turbulent structure and entrainment in heated jets: The effect of initial conditions. Physics of Fluids, 5(12):3216–3225, 1993.

    Article  Google Scholar 

  4. S.C. Crow and F.H. Champagne. Orderly structure in jet turbulence. Journal of Fluid Mechanics, 48:547–691, 1971.

    Article  Google Scholar 

  5. M. Lee and W.C. Reynolds. Bifurcating and blooming jets. Technical Report TF-22, Stanford University, 1985.

    Google Scholar 

  6. D. Parekh, A. Leonard, and W.C. Reynolds. Bifurcating jets at high Reynolds number. Technical Report TF-35, Stanford University, 1988.

    Google Scholar 

  7. W.C. Reynolds, D.E. Parekh, P.J.D. Juvet, and M.J.D. Lee. Bifurcating and blooming jets. Annual Review of Fluid Mechanics, 35:295–315, 2003.

    Article  MathSciNet  Google Scholar 

  8. J.B. Freund and P. Moin. Mixing enhancement in jet exhaust using fluidic actuators: direct numerical simulations. ASME: FEDSM98–5235, 1998.

    Google Scholar 

  9. J.B. Freund and P. Moin. Jet mixing enhancement by high amplitude fluidic actuation. AIAA Journal, 38(10):1863, 2000.

    Google Scholar 

  10. I. Danaila and B.J. Boersma. Direct numerical simulation of bifurcating jets. Physics of Fluids, 12(5):1255–1257, 1999.

    Article  Google Scholar 

  11. C.B. da Silva and O. Metais. Vortex control of bifurcating jets: A numerical study. Physics of Fluids, 14(11):3798–3819, 2002.

    Article  MathSciNet  Google Scholar 

  12. G. Urbin and O. Metais. Direct and Large Eddy Simulations II, chapter Large-eddy simulations of three-dimensional spatially developing round jets. Kluwer Academic Publishers, 1997.

    Google Scholar 

  13. P. Koumoustakos, J. Freund, and D. Parekh. Evolution strategies for automatic optimization of the jet mixinng. AIAA Journal, 39(5):967–969, 2001.

    Google Scholar 

  14. A. Hilgers and B.J. Boersma. Optimization of turbulent jet mixing. Fluid Dynamic Research, 29:345–368, 2001.

    Article  Google Scholar 

  15. A. Majda and J. Sethian. The derivation of the numerical solution of the equations for zero Mach number Combustion. Combust. Sci. and Tech., 42:185–205, 1985.

    Article  Google Scholar 

  16. P.A. McMurtry, W.H. Jou, J.J. Riley, and R.W. Metcalfe. Direct numerical simulations of a reacting mixing layer with chemical heat release. AIAA, 24:962–970, 1986.

    Article  Google Scholar 

  17. W.C. Cook and J.J. Riley. Direct numerical simulation of a turbulent reactive plume on a parallel computer. Journal of Computational Physics, 129:263–283, 1996.

    Article  MATH  Google Scholar 

  18. F. Ducros, P. Comte, and M. Lesieur. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. Journal of Fluid Mechanics, 326:1–36, 1996.

    Article  MATH  Google Scholar 

  19. O. Metais, M. Lesieur, and P. Comte. Transition, turbulence and combustion modelling, chapter Large-eddy simulations of incompressible and compressible turbulence. Kluwer Academic Publisher, 1999.

    Google Scholar 

  20. J.H. Williamson. Low-Storage Runge-Kutta Schemes. Journal of Computational Physics, 35:48–56, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.K. Lele. Compact finite difference with spectral-like resolution. Journal of Computational Physics, 103:16–42, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral methods in fluid dynamics. Springer-Verlag, 1988.

    Google Scholar 

  23. M.H. Carpenter, D. Gottlieb, and S. Abarbanel. The stability of numerical boundary treatments for compact high-order finite-difference schemes. Journal of Computational Physics, 108:272–295, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  24. Ch. Hirsh. Numerical computation of internal and external flows. John Wiley & Sons, Chichester, 1990.

    Google Scholar 

  25. C. Le Ribault, S. Sarkar, and S.A. Stanley. Large eddy simulation of a plane jet. Physics of Fluids, 11(10):3069–3083, 1999.

    Article  Google Scholar 

  26. T.S. Lund and H.J. Kaltenbach. Experiments with explicit filtering for LES using finite-difference method. Annual research briefs, Stanford University Center for Turbulence Research, 1995.

    Google Scholar 

  27. J.C.R. Hunt, A.A. Wray, and P. Moin. Eddies, stream, and convergence zones in turbulent flows. Proceedings of the Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ. 193–208, 1988.

    Google Scholar 

  28. K.B.M.Q. Zaman and A.K.M.F. Hussain. Vortex pairing in a circular jet under controlled excitation. Journal of Fluid Mechanics, 101:449–491, 1980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Tyliszczak, A., Boguslawski, A. (2007). LES of Variable Density Bifurcating Jets. In: Kassinos, S.C., Langer, C.A., Iaccarino, G., Moin, P. (eds) Complex Effects in Large Eddy Simulations. Lecture Notes in Computational Science and Engineering, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34234-2_20

Download citation

Publish with us

Policies and ethics