Skip to main content

Science, Technology, and Mission Design for the Laser Astrometric Test of Relativity

  • Chapter
Lasers, Clocks and Drag-Free Control

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 349))

The Laser Astrometric Test of Relativity (LATOR) is a Michelson– Morley type experiment designed to test the metric nature of gravitation – a fundamental postulate of the Einstein’s general theory of relativity. The key element of LATOR is a geometric redundancy provided by the long-baseline optical interferometry and interplanetary laser ranging. By using a combination of independent time-series of gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision, respectively, better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity and cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.D., Colombo, G., Friedman, L.D., and Lau, E.L., “An Arrow to the Sun,” in proc. “International Symposium on Experimental Gravitation,”  Pavia, Italy, Sept 1976, ed. B. Bertotti, pp. 393-422, (Accademia Nazionale dei Lincei, Rome, 1977).

    Google Scholar 

  2. Anderson, J.D., Gross, M., Nordtvedt, K.L., and Turyshev, S.G., “The Solar Test of the Equivalence Principle,” Astrophys. J. 459, 365 (1996).

    Article  ADS  Google Scholar 

  3. Anderson, J.D., and Williams, J.G., “Long-Range Tests of the Equivalence Principle,” Class. Quant. Grav. 18, 2447 (2001).

    Article  MATH  ADS  Google Scholar 

  4. Anderson, J.D., Lau, E.L., Turyshev, S.G., Williams, J.G., and Nieto, M.M., “Recent Results for Solar-System Tests of General Relativity.” BAAS 34, 833 (2002).

    Google Scholar 

  5. Anderson, J.D., Lau, E.L., Giampieri G., “Measurement of the PPN Para-meter γ with Radio Signals from the Cassini Spacecraft at X- and Ka-Bands,” in Proc. “The XXII Texas Symposium on Relativistic Astrophysics,” Stanford University, December 13-17, 2004, eConf C041213 #0305 (2004).

    Google Scholar 

  6. Bean, R., Carroll, S.M., Trodden, M., “Insights into Dark Energy: Interplay Between Theory and Observation,” astro-ph/0510059.

    Google Scholar 

  7. Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Spergel, D.N., Tucker, G.S., Wollack, E., Wright, E.L., Barnes, C., Greason, M.R., Hill, R.S., Komatsu, E., Nolta, M.R., Odegard, N., Peirs, H.V., Verde, L., Weiland, J.L., [i.e. WMAP Science Team], “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results,” Astrophys. J. Suppl. 148, 1 (2003), astro-ph/ 0302207.

    Article  ADS  Google Scholar 

  8. Bertolami, O., Páramos, J., “The Pioneer anomaly in the context of the braneworld scenario,” Class. Quant. Grav. 21, 3309, (2004), gr-qc/0310101; “Astrophysical Constraints on Scalar Field Models” Phys. Rev. D71, 023521, (2004), astro-ph/0408216.

    Article  MATH  ADS  Google Scholar 

  9. Bertolami, O., Páramos, J., and Turyshev, S.G.,“General Theory of Relativity: Will it survive the next decade?” see this volume, page 27, gr-qc/0602016.

    Google Scholar 

  10. Bender, P.L., Currie, D.C., Dicke, R.H., Eckhardt, D.H., Faller, J.E., Kaula, W.M., Mulholand, J.D., Plotkin, H.H., Poultney, S.K., Silverberg, E.C., Wilkinson, D.T., Williams, J.G. and Alley, C.O., “The Lunar Laser Ranging Experiment,” Science 182, 229 (1997).

    Article  ADS  Google Scholar 

  11. Bertotti, B., Iess, L., Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft,” Nature 425, 374 (2003).

    Article  ADS  Google Scholar 

  12. de Bernardis, P., Ade, P.A.R., Bock, J.J., Bond, J.R., Borrill, J., Boscaleri, A., Coble, K., Crill, B.P., De Gasperis, G., Farese, P.C., Ferreira, P.G., Ganga, K., Giacometti, M., Hivon, E., Hristov, V.V., Iacoangeli, A., Jaffe, A.H., Lange, A.E., Martinis, L., Masi, S., Mason, P.V., Mauskopf, P.D., Melchiorri, A., Miglio, L., Montroy, T., Netterfield, C.B., Pascale, E., Piacen-tini, F., Pogosyan, D., Prunet, S., Rao, S., Romeo, G., Ruhl, J.E., Scaramuzzi, F., Sforna, D., Vittorio, N., “A Flat Universe From High-Resolution Maps of the Cosmic Microwave Background Radiation,” Nature 404, 955 (2000).

    Article  ADS  Google Scholar 

  13. Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., and Morrow, C.A., “Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings.” Astrophys. J. 343, 526 (1989).

    Article  ADS  Google Scholar 

  14. Brynjolfsson, A., “Redshift of photons penetrating a hot plasma,” astro-ph/0401420.

    Google Scholar 

  15. Capozziello, S., Troisi, A., “PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity,” Phys. Rev. D 72, 044022, (2005), astro-ph/0507545.

    MathSciNet  ADS  Google Scholar 

  16. Carroll, S.M., “The Cosmological Constant,” Living Rev. Rel. 4, 1 (2001), astro-ph/0004075.

    Google Scholar 

  17. Carroll, S.M., Hoffman, M., and Trodden, M., “Can the dark energy equation-of-state parameter w be less than -1?” Phys. Rev. D 68, 023509 (2003), astro-ph/0301273.

    ADS  Google Scholar 

  18. Carroll, S.M., Duvvuri, V., Trodden, M., and Turner, M., “Is Cosmic Speed-Up Due to New Gravitational Physics?” Phys. Rev. D 70, 043528 (2004), astro-ph/0306438.

    ADS  Google Scholar 

  19. Carroll, S.M., De Felice, A., Duvvuri, V., Easson, D.A., Trodden, M., Turner, M.S., “The Cosmology of Generalized Modified Gravity Models,” astro-ph/0410031.

    Google Scholar 

  20. Carroll, S.M., “ Is Our Universe Natural?,” hep-th/0512148,

    Google Scholar 

  21. Ciufolini, I., Wheeler, J. A., “Gravitation and Inertia.” (Princeton University Press, 1995).

    Google Scholar 

  22. Damour, T., and Nordtvedt, K.L., Jr., “General Relativity as a Cosmological Attractor of Tensor Scalar Theories”, Phys. Rev. Lett. 70, 2217 (1993a).

    Article  ADS  Google Scholar 

  23. Damour, T., and Nordtvedt, K.L., Jr., “Tensor-scalar cosmological models and their relaxation toward general relativity,” Phys. Rev. D 48, 3436 (1993b).

    MathSciNet  ADS  Google Scholar 

  24. Damour, T., Polyakov, A.M., “String Theory and Gravity,” Gen. Relativ. Gravit. 26, 1171 (1994a).

    Article  MathSciNet  ADS  Google Scholar 

  25. Damour, T., and Polyakov, A.M., “The string dilaton and a least coupling principle,” Nucl. Phys. B 423, 532 (1994b).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Damour, T., Esposito-Farese, G., “Non-perturbative strong-field effects in tensor-scalar theories of gravitation,” Phys. Rev. Lett. 70, 2220 (1993).

    Article  ADS  Google Scholar 

  27. Damour, T., Esposito-Farese, G., “ Testing gravity to second post-Newtonian order: a field-theory approach,” Phys. Rev. D 53, 5541 (1996a), gr-qc/9506063.

    MathSciNet  ADS  Google Scholar 

  28. Damour, T., Esposito-Farese, G., “Tensor-scalar gravity and binary pulsar experiments,” Phys. Rev. D 54, 1474 (1996b), gr-qc/9602056.

    ADS  Google Scholar 

  29. Damour, T., Esposito-Farese, G., “Gravitational-wave versus binary-pulsar tests of strong-field gravity,” Phys. Rev. D 58, 042001 (1998), gr-qc/9803031.

    ADS  Google Scholar 

  30. Damour T., Taylor J.H., “ Strong-field tests of relativistic gravity and binary pulsars,” Phys. Rev. D 45, 1840 (1992).

    ADS  Google Scholar 

  31. Damour, T., Piazza, F., and Veneziano, G., “Runaway dilaton and equivalence principle violations” Phys. Rev. Lett. 89, 081601, (2002a), gr-qc/0204094.

    Article  ADS  Google Scholar 

  32. Damour, T., Piazza, F., and Veneziano, G., “Violations of the equivalence principle in a dilaton-runaway scenario,” Phys. Rev. D 66, 046007, (2002b), hep-th/0205111.

    MathSciNet  ADS  Google Scholar 

  33. Dvali, G., Gabadadze, G., Porrati, M., “4D Gravity on a Brane in 5D Minkowski Space,” Phys. Lett. B 485, 208, (2000), hep-th/0005016.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Dvali, G., Gabadadze, G., Porrati, M., “On Sub-Millimeter Forces From Extra Dimensions,” Mod. Phys. Lett. A 15, 1717 (2000), hep-ph/0007211.

    MathSciNet  ADS  Google Scholar 

  35. Dvali, G., Gruzinov, A., Zaldarriaga, M., “The Accelerated Universe and the Moon,” Phys. Rev. D 68, 024012 (2003), hep-ph/0212069.

    ADS  Google Scholar 

  36. Epstein, R., Shapiro, I.I., “Post-post-Newtonian deflection of light by the Sun,” Phys. Rev. D 22, 2947 (1980).

    ADS  Google Scholar 

  37. Eubanks, T.M. et al. “Advances in Solar System Tests of Gravity.” In: Proc. of The Joint APS/AAPT 1997 Meeting, 18-21 April 1997, Washington D.C. BAAS, #K 11.05 (1997).

    Google Scholar 

  38. Fischbach, E., and Freeman, B.S., “Second-order contribution to the gravitational deflection of light,” Phys. Rev. D 22, 2950 (1980).

    ADS  Google Scholar 

  39. Gerber, A., et al., “LATOR 2003 Mission Analysis,” JPL Advanced Project Design Team (Team X) Report #X-618 (2003).

    Google Scholar 

  40. Gough, D. and Toomre, J., “Seismic Observations of the Solar Interior,” Ann.Rev. Astron. Astroph. 29, 627 (1991).

    Article  ADS  Google Scholar 

  41. Halverson, N.W., Leitch E.M., Pryke C., Kovac, J., Carlstrom, J.E., Holzapfel, W.L., Dragovan, M., Cartwright, J.K., Mason, B.S., Padin, S., Pearson, T.J., Shepherd, M.C., Readhead, A.C.S., “DASI First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum,” Astrophys. J 568, 38 (2002), astro-ph/0104489.

    Article  ADS  Google Scholar 

  42. Holdridge, D. B., in Supporting Research and Advanced Development, Space Programs Summary 37-48, Jet Propulsion Laboratory Report, unpublished, Vol. III, pp. 2-4 (1967).

    Google Scholar 

  43. Iess L., Giampieri, G., Anderson, J.D., and Bertotti, B., “Doppler measurement of the solar gravitational deflection,” Class. Quant. Grav. 16, 1487 (1999).

    Article  ADS  Google Scholar 

  44. “International Space Station Evolution Data Book, Volume I. Baseline Design, Rev. A,” C.A. Jorgensen, ed., Hampton, Virginia. NASA Document#NASA/SP-2000-6109/VOL1/ REV1(October2000), at http://techreports.larc.nasa.gov/ltrs/PDF/2000/spec/NASA- 2000-sp6109vol1rev1.pdf

  45. Klioner, S.A., this volume, (2005).

    Google Scholar 

  46. Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.-N., Sjogren, W.L. “A Global Solution for the Mars Static and Seasonal Gravity, Mars Orientation, Phobos and Deimos Masses, and Mars Ephemeris,” submitted to Icarus, (2005).

    Google Scholar 

  47. Lange, Ch., Camilo, F., Wex, N., Kramer, M., Backer, D.C., Lyne, A.G. and Doroshenko, O., “ Precision timing measurements of PSR J1012+5307,” Mon. Not. R. Astron. Soc. 326, 274 (2001).

    Article  ADS  Google Scholar 

  48. Lebach, D.E., Corey, B.E., Shapiro, I.I., Ratner, M.I., Webber, J.C., Rogers, A.E.E., Davis, J.L. and Herring, T.A., “Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry,” Phys. Rev. Lett. 75, 1439 (1995).

    Article  ADS  Google Scholar 

  49. Lindegren, L., and Perryman, M.A.C., “The GAIA Concept, in Proceedings of a Joint RGO-ESA Workshop on Future Possibilities for Astrometry in Space,” Cambridge, UK, 19-21 June 1995 (ESA SP-379, September 1995), 23 (1995).

    Google Scholar 

  50. Lydon, T.J., Sofia, S., “A Measurement of the Shape of the Solar Disk: The Solar Quadrupole Moment, the Solar Octopole Moment, and the Advance of Perihelion of the Planet Mercury,” Phys. Rev. Lett. 76, 177 (1996).

    Article  ADS  Google Scholar 

  51. Maleki, L., Prestage, J., “SpaceTime Mission: Clock Test of Relativity at Four Solar Radii,” in proc. of “Gyros, Clocks, Interferometers …: Testing Relativistic Gravity in Space,” Edited by C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl, Lecture Notes in Physics 562, 369 (2001).

    Google Scholar 

  52. Melliti, T., Fridelance, F., and Samain, E., “Study of gravitational theories and of the solar quadrupole moment with the SORT experiment: Solar Orbit Relativity Test,” in preparattion (2005).

    Google Scholar 

  53. Mester, J., Torii, R., Worden, P., Lockerbie, N., Vitale, S., and Everitt, C.W.F., “The STEP Mission: principles and baseline design,” Class. Quant. Grav. 18, 2475 (2001).

    Article  MATH  ADS  Google Scholar 

  54. Milani, A., Vokrouhlicky, D., Villani, D., and Rossi, A., “Testing general relativity with the BepiColombo radio science experiment,” Phys. Rev. D 66, 082001 (2002).

    ADS  Google Scholar 

  55. Milman, M., Catanzarite, J., and Turyshev, S.G., “The effect of wavenumber error on the computation of path-lenght delay in white-light interferometry,” Applied Optics 41, 4884 (2002).

    Article  ADS  Google Scholar 

  56. Milman, M., and Turyshev S.G., “Observational Model for Microarcsecond Astrometry with the Space Interferometry Mission,” Optical Engeneering 42, 1873 (2003), physics/0301047.

    Article  ADS  Google Scholar 

  57. Moyer, T. D., JPL Internal Memorandum No. 314.7-122, 1977, unpublished.

    Google Scholar 

  58. Moyer, T. D., “Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation” (Willey, 2003).

    Google Scholar 

  59. Netterfield, C.B., Ade, P.A.R., Bock, J.J., Bond, J.R., Borrill, J., Boscaleri, A., Coble, K., Contaldi, C.R., Crill, B.P., de Bernardis, P., Farese, P., Ganga, K., Giacometti, M., Hivon, E., Hristov, V.V., Iacoangeli, A., Jaffe, A.H., Jones, W.C., Lange, A.E., Martinis, L., Masi, S., Mason, P., Mauskopf, P.D., Melchiorri, A., Montroy, T., Pascale, E., Piacentini, F., Pogosyan, D., Pongetti, F., Prunet, S., Romeo, G., Ruhl, J.E., Scaramuzzi, F., [i.e. Boomerang Collaboration], “A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background,” Astrophys. J. 571, 604 (2002), astro-ph/0104460.

    Article  ADS  Google Scholar 

  60. Ni, W.-T., “ASTROD - An Overview,” Int. J. Mod. Phys. D 11, 947 (2002).

    ADS  Google Scholar 

  61. Ni, W.-T., Shiomi, S., and Liao, A.-C., “ASTROD, ASTROD I and their gravitational-wave sensitivities,” Class. Quant. Grav. 21, S641 (2004), gr-qc/0309011.

    Article  MATH  ADS  Google Scholar 

  62. Nordtvedt, K.L., Jr., “Equivalence Principle for Massive Bodies. I. Phenomenology,” Phys. Rev. 169, 1014 (1968a).

    Article  ADS  Google Scholar 

  63. Nordtvedt, K.L., Jr., “Equivalence Principle for Massive Bodies. II. Theory,” Phys. Rev. 169, 1017 (1968b).

    Article  ADS  Google Scholar 

  64. Nordtvedt, K.L., Jr., “Testing Relativity with Laser Ranging to the Moon,” Phys. Rev. 170, 1186 (1968c).

    Article  ADS  Google Scholar 

  65. Nordtvedt, K.L., Jr., Probing Gravity to the 2nd Post-Newtonian Order and to one part in 107 Using the Sun, ApJ 320, 871 (1987).

    Article  ADS  Google Scholar 

  66. Nordtvedt, K.L., Jr., Lunar Laser Ranging Re-examined: The Non-Null Relativistic Contribution, Phys. Rev. D 43, 10 (1991).

    Google Scholar 

  67. Nordtvedt, K.L., Jr., The relativistic orbit observables in lunar laser ranging, Icarus 114, 51 (1995).

    Article  ADS  Google Scholar 

  68. Nordtvedt, K.L., Jr., Significance of ‘second-order’ light propagation experiments in the solar system, Class. Quant. Grav. 13, A11 (1996).

    Article  MATH  ADS  Google Scholar 

  69. Nordtvedt, K.L., Jr., Reducing Asteroid Belt Correlated Noise from Earth Mars Ranging Data, Icarus 129, 120 (1997).

    Article  ADS  Google Scholar 

  70. Nordtvedt, K.L., Jr., Optimizing the observation schedule for tests of gravity in lunar laser ranging and similar experiments, Class. Quant. Grav. 15, 3363 (1998).

    Article  ADS  Google Scholar 

  71. Nordtvedt, K.L., Jr., 30 years of lunar laser ranging and the gravitational interaction, Class. Quant. Grav. 16, A101 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  72. Nordtvedt, K.L., Jr., Lunar Laser Ranging - A Comprehensive Probe of Post-Newtonian Gravity, (2003), gr-qc/0301024.

    Google Scholar 

  73. Nordtvedt, K.L., Jr., “Covariance analysis studies for LATOR mission,” this volume (2005).

    Google Scholar 

  74. Peebles, P.J.E., and Ratra, B., The Cosmological Constant and Dark Energy, Rev. Mod. Phys. 75, 599 (2003), astro-ph/0207347.

    Article  MathSciNet  ADS  Google Scholar 

  75. Peacock, J.A., et al., A measurement of the cosmological mass density from clustering in the 2dF galaxy redshift survey, Nature 410, 169 (2001).

    Article  ADS  Google Scholar 

  76. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Nunes, N.J., Pain, R., Pennypacker, C.R., Quimby, R., Lidman, C., Ellis, R.S., Irwin, M., McMahon, R.G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B.J., Filippenko, A.V., Matheson, T., Fruchter, A.S., Panagia, N., Newberg, H.J.M., Couch, W.J., [i.e. Supernova Cosmology Project Collaboration], “Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys. J. 517, 565 (1999), astro-ph/9812133.

    Article  ADS  Google Scholar 

  77. Pitjeva, E.V., “Experimental testing of relativistic effects, variability of the gravitational constant and topography of Mercury surface from radar observations 1964-1989,” Celest. Mech. Dyn. Astr. 55, 313 (1993).

    Article  ADS  Google Scholar 

  78. Pitjeva, E.V., “Relativistic Effects and Solar Oblateness from Radar Obser-vations of Planets and Spacecraft,” Astronomy Letters 31, 340 (2005).

    Article  ADS  Google Scholar 

  79. Plowman, J.E., Hellings, R.W., “LATOR Covariance Analysis,” Class. Quant. Grav. 23, 309 (2006), gr-qc/0505064.

    Article  MATH  ADS  Google Scholar 

  80. Reasenberg, R.D., Shapiro, I.I., MacNeil, P.E., Goldstein, R.B., Breidenthal, J.C., Brenkle, J.P., Cain, D.L., Kaufman, T.M., Komarek, T.A., Zygielbaum, A.I., “Viking relativity experiment: Verification of signal retardation by solar gravity,” ApJ Lett. 234, L219 (1979).

    Article  ADS  Google Scholar 

  81. Robertson, D.S., Carter, W.E., and Dillinger, W.H., “A new measurement of solar gravitational deflection of radio signals using VLBI,” Nature 349, 768 (1991).

    Article  ADS  Google Scholar 

  82. Reinhard, R., “Ten Years of Fundamental Physics in ESA’s Space Science Programme.” ESA Bulletin 98, (1999).

    Google Scholar 

  83. Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntzeff, N.B.; Tonry, J.,“Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” [i.e., Supernova Search Team Collaboration], Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  84. Richter, G.W., and Matzner, R.A., “2nd-order contributions to relativistic time delay in the parametrized post-Newtonian formalism,” Phys. Rev. D 26, 1219 (1982a).

    ADS  Google Scholar 

  85. Richter, G.W., Matzner, R.A., “Second-order contributions to gravitational deflection of light in the parametrized post-Newtonian formalism. II. Photon orbits and deflections in three dimensions,” Phys. Rev. D 26, 2549 (1982b).

    ADS  Google Scholar 

  86. Richter, G.W., Matzner, R.A., “Second-order contributions to relativistic time delay in the parametrized post-Newtonian formalism,” Phys. Rev. D 28, 3007-3012 (1983).

    ADS  Google Scholar 

  87. Sovers, O.J., Fanselow, J.L., and Jacobs, C.S., “Astrometry and geodesy with radio interferometry: experiments, models, results”, Rev. Mod. Phys., 70, 1393-1454 (1998).

    Article  ADS  Google Scholar 

  88. Spallicci, A., “The Solar Probe mission for gravitation experiments: Orbital mechanics, thermal design, communications and instrumentation”, In proc. “48th IAF Congress,” Torino, (1997).

    Google Scholar 

  89. Shao, M., Colavita, M., "Potential of long-baseline infrared interferometry for narrow-angle astrometry,” A&A 262, 353 (1992).

    ADS  Google Scholar 

  90. Shao, M., ”Prospects for Ground Based Interferometric Astrometry,” Astrophys. Space Sci. 223, 119 (1995).

    Article  ADS  Google Scholar 

  91. Shao, M., Yu, G., Gürsel, Y., Hellings, R., et al. “Laser Astrometric Test of Relativity (LATOR),” JPL Internal Technical Memorandum, (1996).

    Google Scholar 

  92. Shapiro, I. I., “Fourth Test of General Relativity,” Phys. Rev. Lett. 13, 789-791 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  93. Shapiro, I.I., Counselman, C.C., III, and King, R.W., “Verification of the Principle of Equivalence for Massive Bodies,” Phys. Rev. Lett. 36, 555 (1976).

    Article  ADS  Google Scholar 

  94. Shapiro, I.I., Reasenberg, R.D., MacNeil, P.E., Goldstein, R.B., Brenkle, J.P., Cain, D.L., Komarek, T., Zygielbaum, A.I., Cuddihy, W.F., Michael, W.H., Jr., “The Viking relativity experiment,” JGR 82, 4329 (1977).

    Article  ADS  Google Scholar 

  95. Shapiro, S.S., Davis, J.L., Lebach, D.E., and Gregory, J.S., ”Measurement of the Solar Gravitational Deflection of RadioWaves using Geodetic Very-Long-Baseline Interferometry Data, 1979-1999,” Phys. Rev. Lett. 92, 121101 (2004).

    Article  ADS  Google Scholar 

  96. Tausner, M.J., “General Relativity and Its Effects on Planetary Orbits and Intarplanetary Observations,” (Lincoln Laboratory, MIT, Cambridge, MA), Technical Report No. 425 (1966).

    Google Scholar 

  97. Taylor, J.H., Wolszczan, A., Damour, T., and Weisberg, J.M., “Experimental constraints on strong-field relativistic gravity,” Nature 355, 132 (1992).

    Article  ADS  Google Scholar 

  98. Tonry, J.L., Schmidt, B.P., Barris, B., Candia, P., Challis, P., Clocchiatti, A., Coil, A.L., Filippenko, A.V., Garnavich, P., Hogan, C., Holland, S.T., Jha, S., Kirshner, R.P., Krisciunas, K., Leibundgut, B., Li, W., Matheson, T., Phillips, M.M., Riess, A.D., Schommer, R., Smith, R.C., Sollerman, J., Spyromilio, J., Stubbs, C.W., Suntzeff, N.B., “Cosmological Results from High-z Supernovae,” Astrophys. J. 594, 1 (2003), astro-ph/0305008.

    Article  ADS  Google Scholar 

  99. Turyshev S.G., “Relativistic stellar aberration for the Space Interferometry Mission,” (2002), gr-qc/0205061.

    Google Scholar 

  100. Turyshev S.G., “Analytical Modeling of the White Light Fringe,” Applied Optics 42, 71 (2003), physics/0301026.

    Article  ADS  Google Scholar 

  101. Turyshev, S.G., Shao, M., and Nordtvedt, K.L., Jr., “The Laser Astrometric Test of Relativity (LATOR) Mission,” Class. Quant. Grav. 21, 2773 (2004a), gr-qc/0311020.

    Article  MATH  ADS  Google Scholar 

  102. Turyshev, S.G., Williams, J.G., Nordtvedt, K.L., Jr., Shao, M., and Murphy, T.W., Jr., “35 Years of Testing Relativistic Gravity: Where do we go from here?.” In Proc. “302.WE-Heraeus-Seminar: “Astrophysics, Clocks and Fundamental Constants,” 16-18 June 2003. The Physikzentrum, Bad Honnef, Germany.” Springer Verlag, Lect. Notes Phys. 648, 301 (2004), gr-qc/0311039.

    Google Scholar 

  103. Turyshev, S.G., Shao, M., and Nordtvedt, K.L., Jr., “Experimental Design for the LATOR Mission,” Int. J. Mod. Phys. D 13, 2035 (2004b), gr-qc/0410044.

    ADS  Google Scholar 

  104. Turyshev, S.G., Shao, M., and Nordtvedt, K.L., Jr., “Optical Design for the Laser Astrometric Test of Relativity”, in Proc. “The XXII Texas Symposium on Relativistic Astrophysics,” Stanford University, December 13-17, 2004, eConf C041213 #0306 (2004c), gr-qc/0502113.

    Google Scholar 

  105. Turyshev, S.G., Shao, M., and Nordtvedt, K.L., Jr., “Mission Design for the Laser Astrometric Test Of Relativity,” to be published, Advances Space. Res., (2005), gr-qc/0409111.

    Google Scholar 

  106. Turyshev, S.G., Dittus, H., Lämmerzahl, C., Theil, S., Ertmer, W., Rasel, E., Foerstner, R., Johann, U., Klioner, S., Soffel, M., Dachwald, B., Seboldt, W., Perlick, V., Sandford, M.C.W., Bingham, R., Kent, B., Sumner, T.J., Berto-lami, O., Páramos, J., Christophe, B., Foulon, B., Touboul, P., Bouyer, P., Damour, T., Salomon, C., Reynaud, S., Brillet, A., Bondu, F., Mangin, J.-F., Samain, E., Erd, C., Grenouilleau, J.C., Izzo, D., Rathke, A., Asmar, S.W., Colavita, M., Gürsel, Y., Hemmati, H., Shao, M., Williams, J.G., Nordtvedt, K.L., Jr., Degnan, J., Plowman, J.E., Hellings, R., Murphy, T.W., Jr., “Fundamental Physics with the Laser Astrometric Test Of Relativity,” In proceesings of “2005 ESLAB Symposium ”Trends in Space Science and Cosmic Vision 2020,” ESA/ESTEC, Noordwijk, The Netherlands, 19 April 2005, ESA Publication SP-588, 11-18 (2005), gr-qc/0506104.

    Google Scholar 

  107. Will, C.M., Nordtvedt, K.L., Jr., “Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism,” ApJ 177, 757 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  108. Will, C.M., “General Relativity at 75: How Right was Einstein?” Science 250, 770 (1990).

    Article  ADS  Google Scholar 

  109. Will, C.M., “Theory and Experiment in Gravitational Physics,” (Cambridge University Press, 1993).

    Google Scholar 

  110. Will, C.M., “The Confrontation between General Relativity and Experiment,” (2005), gr-qc/0510072.

    Google Scholar 

  111. Williams, J.G., Newhall, X.X. and Dickey, J.O., “Relativity Parameters Determined from Lunar Laser Ranging,” Phys. Rev. D 53, 6730 (1996).

    ADS  Google Scholar 

  112. Williams, J.G., Anderson, J.D., Boggs, D.H., Lau, E.L., and Dickey, J.O., “Solar System Tests for Changing Gravity,” AAS Meeting, Pasadena, CA, June 3-7, 2001, BAAS 33, 836 (2001).

    Google Scholar 

  113. Williams, J.G., Turyshev, S.G., and Murphy, T.W., Jr., “Improving LLR Tests of Gravitational Theory,” Int. J. Mod. Phys. D 13, 567, (2004a), gr-qc/0311021.

    ADS  Google Scholar 

  114. Williams, J.G., Turyshev, S.G., and Boggs, D.H., “Progress in Lunar Laser Ranging Tests of Relativistic Gravity,” Phys. Rev. Lett. 93, 261101, (2004b), gr-qc/0411113.

    Article  ADS  Google Scholar 

  115. Williams, J.G., Turyshev, S.G., and Boggs, D.H., “Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon.” In proceedings of “Testing the Equivalence Principle on Ground and in Space,” Pescara, Italy, September 20-23, 2004, C. Lämmerzahl, C.W.F. Everitt and R. Ruffini, editors. To be published by Springer Verlag, Lect. Notes Phys., (2005), gr-qc/0507083.

    Google Scholar 

  116. Veillet, C., et al., “Proposal in response to the ESA call for mission concepts for follow-up Horizon 2000,” (1993).

    Google Scholar 

  117. Veillet, C., Stanford, M., “Solar Orbit Relativity Test: A mission for measuring γ through the solar gravitational deflection and delay of light.” Presented at “Future Fundamental Physics Missions in Space and Enabling Technologies, Spain, April 5-7, 1994,” (1994).

    Google Scholar 

  118. Vecchiato, A., Lattanzi, M.G., Bucciarelli, B., Costa, M., de Felice, F., Gai, M., “Testing general relativity by micro-arcsecond global astrometry.” Astron. & Astrophysics 399, 337 (2003).

    Article  ADS  Google Scholar 

  119. Worden, P., Mester, J., Torii, R., “STEP error model development,” Class. Quant. Grav. 18, 2543 (2001).

    Article  MATH  ADS  Google Scholar 

  120. Yu, J., Shao, M., Gursel Y., and Hellings, R., “LATOR Mission,” SPIE Publ. 2200, 325 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turyshev, S.G., Shao, M., Jr, K.L.N. (2008). Science, Technology, and Mission Design for the Laser Astrometric Test of Relativity. In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds) Lasers, Clocks and Drag-Free Control. Astrophysics and Space Science Library, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34377-6_22

Download citation

Publish with us

Policies and ethics