Skip to main content

Mathematical Models for the Sedimentation of Suspensions

  • Chapter
Multifield Problems in Solid and Fluid Mechanics

Summary

Mathematical models for sedimentation processes are needed in numerous industrial applications for the description, simulation, design and control of solid-liquid separation processes of suspensions. The first simple but complete model describing the settling of a monodisperse suspension of small rigid spheres is the kinematic sedimentation model due to Kynch [93], which leads to a scalar nonlinear conservation law. The extension of this model to flocculated suspensions, pressure filters, polydisperse suspensions and continuously operated clarifier-thickener units give rise to a variety of time-dependent partial differential equations with intriguing non-standard properties. These properties include strongly degenerate parabolic equations, free boundary problems, strongly coupled systems of conservation laws which may fail to be hyperbolic, and conservation laws with a discontinuous flux. This contribution gives an overview of the authors’ research that has been devoted to the mathematical modeling of solid-liquid separation, the existence and uniqueness analysis of these equations, the design and convergence analysis of numerical schemes, and the application to engineering problems. Extensions to other applications and general contributions to mathematical analysis are also addressed.

Research Project A2 “Sedimentation with Compression”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Anzellotti. Pairings between measures and functions and compensated compactness. Ann. Mat. Pura Appl., 135:293–318, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Bardos, A. Y. Le Roux, and J. C. Nédélec. First order quasilinear equations with boundary conditions. Comm. PDE, 4:1017–1034, 1979.

    MATH  Google Scholar 

  3. G. K. Batchelor and R. Janse van Rensburg. Structure formation in bidisperse sedimentation. J. Fluid Mech., 166:379–407, 1986.

    Article  Google Scholar 

  4. J. Bell, J. Trangenstein, and G. Shubin. Conservation laws of mixed type describing three-phase flow in porous media. SIAM J. Appl. Math., 46:1000–1017, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Berres. Modeling, Analysis and Numerical Simulation of Polydisperse Suspensions. Doctoral Thesis, University of Stuttgart, 2006.

    Google Scholar 

  6. S. Berres and R. Bürger. On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments. Int. J. Solids Structures, 40:4965–4987, 2003.

    Article  MATH  Google Scholar 

  7. S. Berres, R. Bürger, A. Coronel, and M. Sepúlveda. Numerical identification of parameters for a flocculated suspension from concentration measurements during batch centrifugation. Chem. Eng. J., 111:91–103, 2005.

    Article  Google Scholar 

  8. S. Berres, R. Bürger, A. Coronel, and M. Sepúlveda. Numerical identification of parameters for a strongly degenerate convection-diffusion problem modelling centrifugation of flocculated suspensions. Appl. Numer. Math., 52:311–337, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Berres, R. Bürger, and H. Frid. Neumann problems for quasilinear parabolic systems modelling polydisperse suspensions. SIAM J. Math. Anal. To appear.

    Google Scholar 

  10. S. Berres, R. Bürger, and K. H. Karlsen. Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions. J. Comp. Appl. Math., 164–165:53–80, 2004.

    Article  Google Scholar 

  11. S. Berres, R. Bürger, K. H. Karlsen, and E. M. Tory. Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math., 64:41–80, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Berres, R. Bürger, and E. M. Tory. Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures. Comput. Visual. Sci., 6:67–74, 2004.

    Article  MATH  Google Scholar 

  13. S. Berres, R. Bürger, and E. M. Tory. Applications of polydisperse sedimentation models. Chem. Eng. J., 111:105–117, 2005.

    Article  Google Scholar 

  14. S. Berres, R. Bürger, and E. M. Tory. On mathematical models and numerical simulation of the fluidization of polydisperse suspensions. Appl. Math. Modelling, 29:159–193, 2005.

    Article  MATH  Google Scholar 

  15. R. Bürger. Ein Anfangs-Randwertproblem einer quasilinearen parabolischen entarteten Gleichung in der Theorie der Sedimentation mit Kompression. Doctoral Thesis, University of Stuttgart, 1996.

    Google Scholar 

  16. R. Bürger. Phenomenological foundation and mathematical theory of sedimentation-consolidation processes. Chem. Eng. J., 80:177–188, 2000.

    Article  Google Scholar 

  17. R. Bürger, M. C. Bustos, and F. Concha. Settling velocities of particulate systems: 9. Phenomenological theory of sedimentation processes: Numerical simulation of the transient behaviour of flocculated suspensions in an ideal batch or continuous thickener. Int. J. Mineral Process., 55:267–282, 1999.

    Article  Google Scholar 

  18. R. Bürger and F. Concha. Mathematical model and numerical simulation of the settling of flocculated suspensions. Int. J. Multiphase Flow, 24:1005–1023, 1998.

    Article  MATH  Google Scholar 

  19. R. Bürger and F. Concha. Settling velocities of particulate systems: 12. Batch centrifugation of flocculated suspensions. Int. J. Mineral Process., 63:115–145, 2001.

    Article  Google Scholar 

  20. R. Bürger, F. Concha, K.-K. Fjelde, and K. H. Karlsen. Numerical simulation of the settling of polydisperse suspensions of spheres. Powder Technol., 113:30–54, 2000.

    Article  Google Scholar 

  21. R. Bürger, F. Concha, and K. H. Karlsen. Phenomenological model of filtration processes: 1. Cake formation and expression. Chem. Eng. Sci., 56:4537–4553, 2001.

    Article  Google Scholar 

  22. R. Bürger, F. Concha, K. H. Karlsen, and A. Narváez. Numerical simulation of clarifier-thickener units treating ideal suspensions with a flux density function having two inflection points. Math. Comp. Modelling, 44:255–275, 2006.

    Article  MATH  Google Scholar 

  23. R. Bürger, F. Concha, and F. M. Tiller. Applications of the phenomenological theory to several published experimental cases of sedimentation processes. Chem. Eng. J., 80:105–117, 2000.

    Article  Google Scholar 

  24. R. Bürger, A. Coronel, and M. Sepúlveda. On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels. Appl. Numer. Math. To appear.

    Google Scholar 

  25. R. Bürger, A. Coronel, and M. Sepúlveda. A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modelling sedimentation-consolidation processes. Math. Comp., 75:91–112, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Bürger, J. J. R. Damasceno, and K. H. Karlsen. A mathematical model for batch and continuous thickening in vessels with varying cross section. Int. J. Mineral Process., 73:183–208, 2004.

    Article  Google Scholar 

  27. R. Bürger, S. Evje, and K. H. Karlsen. On strongly degenerating convectiondiffusion problems modeling sedimentation-consolidation processes. J. Math. Anal. Appl., 247:517–556, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Bürger, S. Evje, K. H. Karlsen, and K. A. Lie. Numerical methods for the simulation of the settling of flocculated suspensions. Chem. Eng. J., 80:91–104, 2000.

    Article  Google Scholar 

  29. R. Bürger, K.-K. Fjelde, K. Höfler, and K. H. Karlsen. Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations. J. Eng. Math., 41:167–187, 2001.

    Article  MATH  Google Scholar 

  30. R. Bürger, H. Frid, and K. H. Karlsen. On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition. J. Math. Anal. Appl. To appear.

    Google Scholar 

  31. R. Bürger, H. Frid, and K. H. Karlsen. On a free boundary problem for a strongly degenerate quasilinear parabolic equation with an application to a model of pressure filtration. SIAM J. Math. Anal., 34:611–635, 2003.

    Article  MATH  Google Scholar 

  32. R. Bürger, A. García, K. H. Karlsen, and J. D. Towers. A note on an extended clarifier-thickener model with singular source and sink terms. Sci. Ser. A Math. Sci. (N.S.). To appear.

    Google Scholar 

  33. R. Bürger, A. García, K. H. Karlsen, and J. D. Towers. On an extended clarifier-thickener model with singular source and sink terms. Eur. J. Appl. Math. To appear.

    Google Scholar 

  34. R. Bürger and K. H. Karlsen. On some upwind schemes for the phenomenological sedimentation-consolidation model. J. Eng. Math., 41:145–166, 2001.

    Article  MATH  Google Scholar 

  35. R. Bürger and K. H. Karlsen. On a diffusively corrected kinematic-wave traffic model with changing road surface conditions. Math. Models Meth. Appl. Sci., 13:1767–1799, 2003.

    Article  MATH  Google Scholar 

  36. R. Bürger, K. H. Karlsen, C. Klingenberg, and N. H. Risebro. A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units. Nonlin. Anal. Real World Appl., 4:457–481, 2003.

    Article  MATH  Google Scholar 

  37. R. Bürger, K. H. Karlsen, and N. H. Risebro. A relaxation scheme for continuous sedimentation in ideal clarifier-thickener units. Comput. Math. Applic., 50:993–1009, 2005.

    Article  MATH  Google Scholar 

  38. R. Bürger, K. H. Karlsen, N. H. Risebro, and J. D. Towers. On a model for continuous sedimentation in vessels with discontinuous cross-sectional area. In T. Y. Hou and E. Tadmor, editors, Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Ninth International Conference on Hyperbolic Problems (Pasadena, 2002), pages 397–406. Springer-Verlag, Berlin, 2003.

    Google Scholar 

  39. R. Bürger, K. H. Karlsen, N. H. Risebro, and J. D. Towers. Monotone difference approximations for the simulation of clarifier-thickener units. Comput. Visual. Sci., 6:83–91, 2004.

    Article  MATH  Google Scholar 

  40. R. Bürger, K. H. Karlsen, N. H. Risebro, and J. D. Towers. Numerical methods for the simulation of continuous sedimentation in ideal clarifier-thickener units. Int. J. Mineral Process., 73:209–228, 2004.

    Article  Google Scholar 

  41. R. Bürger, K. H. Karlsen, N. H. Risebro, and J. D. Towers. Well-posedness in BV t and convergence of a difference scheme for continuous sedimentation in t ideal clarifier-thickener units. Numer. Math., 97:25–65, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  42. R. Bürger, K. H. Karlsen, and J. D. Towers. Closed-form and finite difference solutions to a population balance model of grinding mills. J. Eng. Math., 51:165–195, 2005.

    Article  MATH  Google Scholar 

  43. R. Bürger, K. H. Karlsen, and J. D. Towers. Mathematical model and numerical simulation of the dynamics of flocculated suspensions in clarifier-thickeners. Chem. Eng. J., 111:119–134, 2005.

    Article  Google Scholar 

  44. R. Bürger, K. H. Karlsen, and J. D. Towers. A mathematical model of clarifierthickener units. PAMM Proc. Appl. Math. Mech., 5:589–590, 2005.

    Article  Google Scholar 

  45. R. Bürger, K. H. Karlsen, and J. D. Towers. A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units. SIAM J. Appl. Math., 65:882–940, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  46. R. Bürger, K. H. Karlsen, W. L. Wendland, and E. M. Tory. Model equations and instability regions for the sedimentation of polydisperse suspensions of spheres. ZAMM Z. Angew. Math. Mech., 82:699–722, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  47. R. Bürger and A. Kozakevicius. Adaptive multiresolution WENO schemes for multi-species kinematic flow models. J. Comp. Phys. Submitted.

    Google Scholar 

  48. R. Bürger, A. Kozakevicius, and M. Sepúlveda. Multiresolution schemes for strongly degenerate parabolic equations. Numer. Meth. Partial Diff. Eqns. Submitted.

    Google Scholar 

  49. R. Bürger and M. Kunik. A critical look at the kinematic-wave theory for sedimentation-consolidation processes in closed vessels. Math. Meth. Appl. Sci., 24:1257–1273, 2001.

    Article  MATH  Google Scholar 

  50. R. Bürger, C. Liu, and W. L. Wendland. Existence and stability for mathematical models of sedimentation-consolidation processes in several space dimensions. J. Math. Anal. Appl., 264:288–310, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  51. R. Bürger and E. M. Tory. On upper rarefaction waves in batch settling. Powder Technol., 108:74–87, 2000.

    Article  Google Scholar 

  52. R. Bürger and W. L. Wendland. Entropy boundary and jump conditions in the theory of sedimentation with compression. Math. Meth. Appl. Sci., 21:865–882, 1998.

    Article  MATH  Google Scholar 

  53. R. Bürger and W. L. Wendland. Existence, uniqueness and stability of generalized solutions of an initial-boundary value problem for a degenerating parabolic equation. J. Math. Anal. Appl., 218:207–239, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  54. R. Bürger and W. L. Wendland. Sedimentation and suspension flows: Historical perspective and some recent developments. J. Eng. Math., 41:101–116, 2001.

    Article  MATH  Google Scholar 

  55. R. Bürger, W. L. Wendland, and F. Concha. A mathematical model for sedimentation-consolidation processes. ZAMM Z. Angew. Math. Mech., 80:S177–S178, 2000.

    MATH  Google Scholar 

  56. R. Bürger, W. L. Wendland, and F. Concha. Model equations for gravitational sedimentation-consolidation processes. ZAMM Z. Angew. Math. Mech., 80:79–92, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  57. M. C. Bustos. On the Existence and Determination of Discontinuous Solutions to Hyperbolic Conservation Laws in the Theory of Sedimentation. Doctoral Thesis, TH Darmstadt, 1984.

    Google Scholar 

  58. M. C. Bustos, R. Bürger, F. Concha, and E. M. Tory. Sedimentation and Thickening. Kluwer Academic Publishers, Dordrecht, 1999.

    MATH  Google Scholar 

  59. M. C. Bustos, F. Concha, and W. L. Wendland. Global weak solutions to the problem of continuous sedimentation of an ideal suspension. Math. Meth. Appl. Sci., 13:1–22, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  60. M. C. Bustos, F. Paiva, and W. L. Wendland. Control of continuous sedimentation of ideal suspensions as an initial and boundary value problem. Math. Meth. Appl. Sci., 12:533–548, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  61. M. C. Bustos, F. Paiva, and W. L. Wendland. Entropy boundary conditions in the theory of sedimentation of ideal suspensions. Math. Meth. Appl. Sci., 19:679–697, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  62. J. Chancelier, M. Cohen de Lara, and F. Pacard. Analysis of a conservation PDE with discontinuous flux: a model of settler. SIAM J. Appl. Math., 54:954–995, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  63. G.-Q. Chen and H. Frid. Divergence-measure fields and hyperbolic conservation laws. Arch. Rat. Mech. Anal., 147:89–118, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  64. F. Concha and R. Bürger. A century of research in sedimentation and thickening. KONA Powder and Particle, 20:38–70, 2002.

    Google Scholar 

  65. F. Concha and R. Bürger. Thickening in the 20th century: A historical perspective. Minerals & Metallurgical Process., 20:57–67, 2003.

    Google Scholar 

  66. A. Coronel. Estudio de un Problema Inverso para una Ecuación Parabólica Degenerada con Aplicaciones a la Teoría de la Sedimentación. PhD thesis, Universidad de Concepción, Chile, 2004.

    Google Scholar 

  67. R. H. Davis. Hydrodynamic diffusion of suspended particles: A symposium. J. Fluid Mech., 310:325–335, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  68. S. Diehl. A conservation law with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math., 56:388–419, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  69. S. Diehl. On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal., 26:1425–1451, 1996.

    Article  MathSciNet  Google Scholar 

  70. F. Dubois and P. Le Floch. Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Diff. Eqns., 71:93–122, 1988.

    Article  MATH  Google Scholar 

  71. B. Engquist and S. Osher. Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp., 34:45–75, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  72. S. Evje and K. H. Karlsen. Monotone difference approximation of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal., 37:1838–1860, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  73. A. Fitt. Mixed systems of conservation laws in industrial mathematical modelling. Surv. Math. Indust., 6:21–53, 1996.

    MATH  MathSciNet  Google Scholar 

  74. K.-K. Fjelde. Numerical Schemes for Complex Nonlinear Hyperbolic Systems of Equations. PhD thesis, University of Bergen, Norway, 2000.

    Google Scholar 

  75. H. Frid. Existence and asymptotic behavior of measure-valued solutions for three-phase flow in porous media. J. Math. Anal. Appl., 196:614–627, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  76. H. Frid and I.-S. Liu. Oscillation waves in Riemann problems inside elliptic regions for conservation laws of mixed type. Z. Angew. Math. Phys., 46:913–931, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  77. P. Garrido. Validación, Simulación y Determinación de Parámetros en un Proceso de Espesamiento. PhD thesis, Universidad de Concepción, Chile, 2005.

    Google Scholar 

  78. P. Garrido, R. Bürger, and F. Concha. Settling velocities of particulate systems: 11. Comparison of the phenomenological sedimentation-consolidation model with published experimental results. Int. J. Mineral Process., 60:213–227, 2000.

    Article  Google Scholar 

  79. P. Garrido, R. Burgos, R. Bürger, and F. Concha. Software for the design and simulation of gravity thickeners. Minerals Eng., 16:85–92, 2003.

    Article  Google Scholar 

  80. P. Garrido, R. Burgos, R. Bürger, and F. Concha. Settling velocities of particulate systems: 13. Software for the batch and continuous sedimentation of flocculated suspensions. Int. J. Mineral Process., 73:131–144, 2004.

    Article  Google Scholar 

  81. P. Garrido, F. Concha, and R. Bürger. Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions. Int. J. Mineral Process., 72:57–74, 2003.

    Article  Google Scholar 

  82. T. Gimse and N. Risebro. Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal., 23:635–648, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  83. P. Grassmann and R. Straumann. Entstehen und Wandern von Unstetigkeiten der Feststoffkonzentration in Suspensionen. Chem.-Ing.-Techn., 35:477–482, 1963.

    Article  Google Scholar 

  84. H. Holden and N. Risebro. Front Tracking for Conservation Laws. Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  85. S. Jin and Z. Xin. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math., 48:235–276, 1995.

    MATH  MathSciNet  Google Scholar 

  86. K. H. Karlsen, C. Klingenberg, and N. H. Risebro. A relaxation scheme for conservation laws with a discontinuous coefficient. Math. Comp., 73:1235–1259, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  87. B. Keyfitz. A geometric theory of conservation laws which change type. ZAMM Z. Angew. Math. Mech., 75:571–581, 1995.

    MATH  MathSciNet  Google Scholar 

  88. R. Klausen and N. Risebro. Stability of conservation laws with discontinuous coefficients. J. Diff. Eqns., 157:41–60, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  89. C. Klingenberg and N. Risebro. Convex conservation laws with discontinuous coefficients. Comm. PDE, 20:1959–1990, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  90. C. Klingenberg and N. Risebro. Stability of a resonant system of conservation laws modeling polymer flow with gravitation. J. Diff. Eqns., 170:344–380, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  91. S. Kružkov. First order quasilinear equations in several independent variables. Math. USSR Sb., 10:217–243, 1970.

    Article  Google Scholar 

  92. A. Kurganov and E. Tadmor. New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys., 160:241–282, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  93. G. Kynch. A theory of sedimentation. Trans. Faraday Soc., 48:166–176, 1952.

    Article  Google Scholar 

  94. O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Uralceva. Linear and Quasilinear Equations of Parabolic Type. American Math. Soc., Providence, R.I., 1968.

    Google Scholar 

  95. O. Lev, E. Rubin, and M. Sheintuch. Steady state analysis of a continuous clarifier-thickener system. AIChE J., 32:1516–1525, 1986.

    Article  Google Scholar 

  96. L. Lin, B. Temple, and H. Wang. A comparison of convergence rates for Godunov’s method and Glimm’s method in resonant nonlinear systems of conservation laws. SIAM J. Numer. Anal, 32:824–840, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  97. L. Lin, B. Temple, and H. Wang. Suppression of oscillations in Godunov’s method for a resonant non-strictly hyperbolic system. SIAM J. Numer. Anal., 32:841–864, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  98. M. Lockett and K. Bassoon. Sedimentation of binary particle mixtures. Powder Technol., 4:1–7, 1979.

    Article  Google Scholar 

  99. A. Majda and R. Pego. Stable viscosity matrices for system of conservation laws. J. Diff. Eqns., 56:229–262, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  100. J. Málek, J. Neč as, M. Rokyta, and M. Ružička. Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, London, UK, 1996.

    MATH  Google Scholar 

  101. C. Mascia, A. Porretta, and A. Terracina. Non-homogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Rat. Mech. Anal., 163:87–124, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  102. J. Masliyah. Hindered settling in a multiple-species particle system. Chem. Eng. Sci., 34:1166–1168, 1979.

    Article  Google Scholar 

  103. A. Narváez. Simulación numérica de la sedimentación de suspensiones ideales en un espesador-clarificador. Master’s thesis, Universidad de Concepción, Chile, 2004.

    Google Scholar 

  104. F. Otto. Ein Randwertproblem für Erhaltungssätze. Doctoral Thesis, Universität Bonn, 1993.

    Google Scholar 

  105. C. A. Petty. Continuous sedimentation of a suspension with a nonconvex flux law. Chem. Eng. Sci., 30:1451–1458, 1975.

    Article  Google Scholar 

  106. S. Qian, R. Bürger, and H. H. Bau. Analysis of sedimentation biodetectors. Chem. Eng. Sci., 60:2585–2598, 2005.

    Article  Google Scholar 

  107. J. F. Richardson and W. N. Zaki. Sedimentation and fluidization: Part I. Trans. Instn. Chem. Engrs. (London), 32:35–53, 1954.

    Google Scholar 

  108. R. Ruiz. Métodos de multiresolución y su aplicación a un modelo de ingeniería. Master’s thesis, Universidad de Concepción, Chile, 2005.

    Google Scholar 

  109. W. Schneider, G. Anestis, and U. Schaflinger. Sediment composition due to settling of particles of different sizes. Int. J. Multiphase Flow, 11:419–423, 1985.

    Article  Google Scholar 

  110. B. Temple. Global solution of the Cauchy problem for a 2 × 2 non-strictly hyperbolic system of conservation laws. Adv. Appl. Math., 3:335–375, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  111. F. Tiller, N. Hsyung, and D. Cong. Role of porosity in filtration: XII. Filtration with sedimentation. AIChE J., 41:1153–1164, 1995.

    Article  Google Scholar 

  112. E. M. Tory. Stochastic sedimentation and hydrodynamic diffusion. Chem. Eng. J., 80:81–89, 2000.

    Article  Google Scholar 

  113. J. Towers. Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal., 38:681–698, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  114. J. Towers. A difference scheme for conservation laws with a discontinuous flux—the nonconvex case. SIAM J. Numer. Anal., 39:1197–1218, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  115. A. Volpert. Generalized solutions of degenerate second-order quasilinear parabolic and elliptic equations. Adv. Diff. Eqns, 5:1453–1518, 2000.

    MathSciNet  Google Scholar 

  116. A. I. Volpert. The spaces BV and quasilinear equations. Math. USSR Sb., 2:225–267, 1967.

    Article  MATH  Google Scholar 

  117. A. I. Volpert and S. I. Hudjaev. Cauchy’s problem for degenerate second order quasilinear parabolic equations. Math. USSR Sb., 7:365–387, 1969.

    Article  Google Scholar 

  118. G. Wallis. A simplified one-dimensional representation off two-component vertical flow and its application to batch sedimentation. In Proceedings of the Symposium on the Interaction Between Fluids and Particles, London, June 20–22, 1962, pages 9–16. Instn. Chem. Engrs., London, 1962.

    Google Scholar 

  119. R. H. Weiland, Y. P. Fessas, and B. Ramarao. On instabilities arising during sedimentation of two-component mixtures of solids. J. Fluid Mech., 142:383–389, 1984.

    Article  Google Scholar 

  120. Z. Wu. A note on the first boundary value problem for quasilinear degenerate parabolic equations. Acta Math. Sci, 4:361–373, 1982.

    Google Scholar 

  121. Z. Wu. A boundary value problem for quasilinear degenerate parabolic equation. MRC Technical Summary Report 2484, University of Wisconsin, USA, 1983.

    Google Scholar 

  122. Z. Wu and J. Wang. Some results on quasilinear degenerate parabolic equations of second order. In Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 3, pages 1593–1609. Science Press, Beijing, Gordon & Breach, Science Publishers Inc., New York, 1982.

    Google Scholar 

  123. Z. Wu and J. Yin. Some properties of functions in BV and their applications x to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeastern Math. J., 5:395–422, 1989.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berres, S., Bürger, R., Wendland, W.L. (2006). Mathematical Models for the Sedimentation of Suspensions. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 28. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34961-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34961-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34959-4

  • Online ISBN: 978-3-540-34961-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics