Skip to main content

Pore fluid

  • Chapter
  • First Online:
Physical Soil Mechanics

Abstract

For saturated soils the interaction of skeleton and pore water can be captured by the effective stress principle and by means of Darcy’s law. In case of partial saturation it is convenient to work again with a kind of pore fluid, and with partial stresses and a permeability relation. A moist soil is glued by capillary water which can scarcely flow. Terzaghi (1920) observed that water in narrow slits between glass plates is less mobile. He called it bound pore water and proposed later that this glues particles in saturated clay (Terzaghi 1931). Derjaguin and Churaev (1973) postulated a denser and more viscous ‘polywater’ in narrow gaps. The DLVO-theory by Derjaguin, Landau, Verwey and Overbeck explains equilibria with interparticle attraction and repulsion in colloids. The interactions of soil particles are more complicated and beyond the present reach of thermodynamics, molecular dynamics and microscopy. So there is no way around heuristic approaches with pore fluid, partial stresses and transport relations, but caution is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balthasar K., Gudehus G., Külzer M., and Libreros-Bertini A.B. Thin layer shearing of a highly plastic clay. Nonlin. Proc. Geophys., 13:671–680, 11 2006.

    Article  Google Scholar 

  • Carman P.C. Flow of Gases Through Porous Media. Academic Press, New York, 1956.

    MATH  Google Scholar 

  • Derjaguin B.V. and Churaev N.V. Nature of anomalous water. Nature, 244: 430–431, 8 1973.

    Article  Google Scholar 

  • Derjaguin B.V., Karasev V.V., and Khromova E.N. Thermal expansion of water in fine pores. J. Colloid Interface Sci., 109 (2):586–587, 1986.

    Article  Google Scholar 

  • Dijkstra M., Hansen J.-P., and Madden P.A. Statistical model for the structure and gelation of smectite clay suspensions. Am. Phys. Soc., 55(3): 3044–3053, 1997.

    Google Scholar 

  • Evans R. Fluids adsorbed in narrow pores: Phase equilibria and structure. J. Phys. Condens. Matter, 2:8989–9007, 1990.

    Article  Google Scholar 

  • Fam M. and Santamarina J.C. Coupled diffusion-fabric-flow phenomena: An effective stress analysis. Can. Geotech. J., 33:515–522, 1996.

    Article  Google Scholar 

  • Gelb L.D., Gubbins K.E., Radhakrishnan R., and Sliwinska-Bartowiak M. Phase separation in confined systems. Rep. Prog. Phys., 62:1573–1659, 1999.

    Article  Google Scholar 

  • Gudehus G. A visco-hypoplastic relation for soft soil. Soils Found., 44(4):11–25, 8 2004b.

    Google Scholar 

  • Guyon E. and Troadec J.-P. Du sac de billes au tas de sable. Odile Jacob, Paris, 1994.

    Google Scholar 

  • Henkel D.J. The effect of overconsolidation on the behaviour of clays during shear. Géotechnique, VI:139–150, 1956.

    Article  Google Scholar 

  • Horn R.G. Surface forces and their action in ceramic materials. J. Am. Ceram. Soc., 73(5):1117–1135, 1990.

    Article  Google Scholar 

  • Israelachvili J.N. Intermolecular and Surface Forces. Academic Press, London, 2 edition. 1995.

    Google Scholar 

  • Jennings J.E.B. and Burland J.B. Limitations to the use of effective stresses in partly saturated soils. Géotechnique, XII:125–146, 1962.

    Article  Google Scholar 

  • McManus K.J. and Davis R.O. Dilation-induced pore fluid cavitation in sands. Géotechnique, 47(1):173–177, 1997.

    Article  Google Scholar 

  • Rendulic L. Ein Grundgesetz der Tonmechanik und sein experimenteller Beweis. Der Bauingenieur, 18(31/32):459–467, 8 1937.

    Google Scholar 

  • Richter S. and Huber G. Time-dependent behavior of fine-grained model material in resonant column experiments. Granular Matter, 6(4):195–206, 2004.

    Google Scholar 

  • Sridharan A. and Venkatappa Rao G. Effective stress theory of shrinkage phenomena. Canad. Geotech. J., 8(4):503–513, 1971.

    Article  Google Scholar 

  • Temperley H.N.V. and Chambers LL.G. The behaviour of water under hydrostatic tension. Proc. Phys. Soc., 58:420–443, 1946.

    Article  Google Scholar 

  • Terzaghi K. New facts about surface friction. Phys. Rev., 16(1):54–61, 1920.

    Article  Google Scholar 

  • Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Leipzig and Wien, 1925.

    MATH  Google Scholar 

  • Terzaghi K. The static rigidity of plastic clays. J. Rheol., 2(3):253–262, 1931.

    Article  Google Scholar 

  • Xue W. and Grest G.S. Shear-induced alignment of collodial particles in the presence of a shear flow. Phys. Rev. Lett., 64(4):419–422, 1 1990.

    Article  Google Scholar 

  • Zou Y. A non-linear permeablity relation depending on the activation energy of pore liquid. Géotechnique, 46(4):769–774, 1996.

    Article  Google Scholar 

  • Külzer M. State Limits of Peloids. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University Karlsruhe, 2010, under preparation.

    Google Scholar 

  • Mikulitsch V. and Gudehus G. Uniaxial tension, biaxial loading and wetting tests on loess. In E.E. Alonso & P. Delage editors, Proceedings of the 1st International Conference on Unsaturated Soils, Paris 1995. Volume 1, pages. 145–150, 1995.

    Google Scholar 

  • Richter S. Mechanical Behavior of Fine-Grained Model Materials During Cyclic Shearing. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 167, 2006.

    Google Scholar 

  • Rübel S. Evolution of State and Shape of Viscous Formations. PhD thesis, 2010, under preparation.

    Google Scholar 

  • Terzaghi K. The shearing resistance of saturated soils and the angle between the planes of shear. In Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, volume I, pages 54–56, 1936.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gudehus, G. (2011). Pore fluid. In: Physical Soil Mechanics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36354-5_6

Download citation

Publish with us

Policies and ethics