Skip to main content

Anisotropic Elastic-Brittle-Damage and Fracture Models Based on Irreversible Thermodynamics

  • Conference paper
Anisotropic Behaviour of Damaged Materials

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 9))

Abstract

Anisotropic damage evolution and crack propagation in elastic-brittle materials is analyzed by the concepts of Continuum Damage Mechanics (CDM) and Finite Element Method FEM (ABAQUS). The original total formulation of the Murakami-Kamiya (MK) model of elastic-damage material is extended and used for damage anisotropy and fracture prediction in concrete. The incremental formulation of the stress-strain equations is developed by the use of the tangent elastic-damage stiffness. The Helmholtz free energy representation is discussed. The unilateral crack opening/closure effect is incorporated in such a way that the continuity requirement during unloading holds. The general failure criterion is proposed by checking the positive definiteness of the Hessian matrix of the free energy function. The Local Approach to Fracture (LAF) by FEM is applied to both the pre-critical damage evolution that precedes the crack initiation, and the post-critical damage/fracture interaction. Crack is modeled as the assembly of failed finite elements in the mesh, the stiffness of which is reduced to zero when the critical points at stress-strain curves are reached. Another way to model crack consists in releasing of the kinematic constrains in the nodes. The developed constitutive model is capable of capturing anisotropic damage evolution and crack growth in 2D structure subjected to the quasistatic or cyclic mechanical or thermal loadings. Different damage evolution in tension or compression, as well as the corresponding fracture modes may be analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ABAQUS (1998). Theory Manual, version 5.8 edn. Habbit, Karlsson & Sorensen, Inc.

    Google Scholar 

  • Al-Gadhib, A. H., Baluch, M. H., Shaalan, A. and Khan, A. R. (2000). Damage model for monotonic and fatigue response of high strength concrete, Int. J. Damage Mech. 9:57–78.

    Google Scholar 

  • Basista, M. (2001). Micromechanical and lattice modelling of brittle damage, Pol. Acad. Sci., Inst. Fund. Technol. Res., Warsaw.

    Google Scholar 

  • Basista, M. and Gross, D. (1989). A note on brittle damage description, Mech. Res. Comm. 16(3): 147–154.

    Google Scholar 

  • Basista, M. and Gross, D. (1997). Internal variable representation of microcrack induced inelasticity in brittle materials, Int. J. Damage Mech. 6: 300–316.

    Article  Google Scholar 

  • Basista, M. and Gross, D. (1998). The sliding crack model of brittle deformation: An internal variable approach, Int. J. Solids Struct. 5–6: 487–509.

    Article  Google Scholar 

  • Betten, J. (2001). Mathematical modeling of material behavior under creep conditions, Appl.Mech. Rev. 54(2): 107–132.

    Article  MathSciNet  Google Scholar 

  • Betten, J. (2002). Creep Mechanics, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Bjorck, A. and Dahlquist, G. (1974). Numerical Methods, Prentice-Hall.

    Google Scholar 

  • Chaboche, J.-L. (1979). Le concept de constrainte effective applique l’elasticite cyclique avec endommagement, Technical Report 1978–3, These Univ. Paris VI et Publication ONERA.

    Google Scholar 

  • Chaboche, J.-L. (1992). Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition, Int. J. Damage Mech. 1: 148–171.

    Article  Google Scholar 

  • Chaboche, J.-L. (1993). Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage, Int. J. Damage Mech. 2: 311–32.

    Article  Google Scholar 

  • Chaboche, J.-L. (1999). Thermodynamically founded CDM models for creep and other con­ditions, in H. Altenbach and J. Skrzypek (eds), Creep and Damage in Materials andStructures, Springer-Verlag, Vien, New York, pp. 209–283.

    Google Scholar 

  • Chaboche, J.-L., Lesne, P. M. and Maire, J. F. (1995). Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic com­posites, Int. J. Damage Mech. 4: 5–21.

    Article  Google Scholar 

  • Chen, W. F. and Han, D. J. (1995). Plasticity for Structural Engineers, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Cordebois, J. and Sidoroff, F. (1982). Damage indiced elastic anisotropy, in J. P. Boehler (ed.), Mechanical Behaviour of Anisotropic Solids, Martinus Nijhoff, The Hague, pp. 761–774.

    Chapter  Google Scholar 

  • Panella, D. and Krajcinovic, D. (1988). A micromechanical model for concrete in compres­sion, Eng. Fracture Mech. 29: 44–66.

    Google Scholar 

  • Halm, D. and Dragon, A. (1996). A model of anisotropic damage by mesocrack growth -unilateral effects, Int. J. Damage Mech. 5: 384–102.

    Article  Google Scholar 

  • Hayakawa, K. and Murakami, S. (1997). Thermodynamical modeling of elastic-plastic dam­age and experimental validation of damage potential, Int. J. Damage Mech. 6: 333–363.

    Article  Google Scholar 

  • Ju, J. W. (1989). On energy-based coupled elastoplastic damage theories: Constitutive mod­eling and computational aspects, Int. J. Solids Struct. 25(7): 803–833.

    Article  MATH  Google Scholar 

  • Krajcinovic, D. (1989). Damage mechanics, Mech. Mater. 8: 117–197.

    Article  Google Scholar 

  • Krajcinovic, D. (1996). Damage Mechanics, Elsevier, Amsterdam.

    Google Scholar 

  • Krajcinovic, D. and Fonseka, G. U. (1981). The continuous damage theory of brittle materi­als, Part I: General theory, Trans. ASME (J. Appl. Mech.) 48(4): 809–815.

    Article  MATH  Google Scholar 

  • Kuna-Ciskal, H. (1999). Local CDM based approach to fracture of elastic-brittle structures, Techn. Mech. 19(4): 351–361.

    Google Scholar 

  • Kuna-Ciskal, H. and Skrzypek, J. (2001). On local approach to fracture in a high strength concrete, in M. Guagliano and M. H. Aliabadi (eds), Advances in Fracture and Damage Mechanics II, Hoggar, Geneva, pp. 385–390.

    Google Scholar 

  • Kuna-Ciskal, H. and Skrzypek, J. (2002). CDM based modeling of damage and fracture mechanisms in concrete under tension and compression, Eng. Fracture Mech. (to be published).

    Google Scholar 

  • Lacy, T. E., McDowell, D. L., Willice, P. A. and Talreja, R. (1997). On representation of damage evolution in continuum damage mechanics, Int. J. Damage Mech. 6: 62–65.

    Article  Google Scholar 

  • Ladeveze, P. and Lemaitre, J. (1984). Damage effective stress in quasi-unilateral conditions, Proceedings IUTAM Congress, Lyngby, Dennmark.

    Google Scholar 

  • Litewka, A. (1985). Effective material constants for orthotropically damaged elastic solid, Arch. Mech. 37(6): 631–642.

    Google Scholar 

  • Mazaras, J. (1986). A model of unilateral elastic damageable material and its application to concrete, in F. H. Wittmann (ed.), Enery Toughness and Fracture Energy of Concrete, Sci. Publ., Elsevier, Amsterdam, The Nederlands, pp. 61–71.

    Google Scholar 

  • Mazars, J. and Pijaudier-Cabot, G. (2001). Bridges between damage and fracture mechanics, in J. Lemaite (ed.), Handbook of Material Behaviour Models, Vol. II, Acad. Press, San Diego, pp. 542–548.

    Chapter  Google Scholar 

  • Murakami, S. and Kamiya, K. (1997). Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics, Int. J. Solids Struct. 39(4): 473–486.

    MATH  Google Scholar 

  • Murakami, S. and Liu, Y. (1995). Mesh-dependence in local approach to creep fracture, Int. J. Damage Mech. 4: 230–250.

    Article  Google Scholar 

  • Murakami, S. and Ohno, N. (1980). A continuum theory of creep and creep damage, in A.R. S. Ponter and D. R. Hayhurst (eds), Creep in Structures. 3rd IUTAM Symposium on Creep in Structures, Springer-Verlag, Berlin, Heidelberg, New York, pp. 442–444.

    Google Scholar 

  • Ortiz, M. (1985). A constitutive theoty for elastic behaviour of concrete, Mech. Mater. 1: 67–93.

    Article  Google Scholar 

  • Pijaudier-Cabot, G. and Bazant, Z. (1987). Nonlocal damage theory, J. Eng. Mech. 113(10): 1512–1533.

    Article  Google Scholar 

  • Pijaudier-Cabot, G. and Mazars, J. (2001). Damage models for concrete, in J. Lemaite (ed.), Handbook of Material Behaviour Models, Academic Press, San Diego, pp. 500–512.

    Chapter  Google Scholar 

  • Rymarz, C. (1993). Continuum Mechanics, PWN, Warszawa. in Polish.

    Google Scholar 

  • Skrzypek, J. J. and Ganczarski, A. (1999). Modeling of Material Damage and Failure of Structures, Springer-Verlag, Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  • Skrzypek, J. and Kuna-Ciskal, H. (2001a). Simulation of damage and crack development in elastic-brittle materials in view of continuum damage mechanics, Zesz. Nauk. Polit. Bialostockiej Mech. 24: 403–444.

    Google Scholar 

  • Skrzypek, J. and Kuna-Ciskal, H. (2001b). Thermal damage and fracture in elastic-brittle rock-like materials, Proc. Fourth Mt. Congr. on Thermal Stresses 2001, Osaka, Japan, pp. 367–370.

    Google Scholar 

  • Skrzypek, J., Kuna-Ciskal, H. and Ganczarski, A. (2000). Computer simulation of damage and fracture in materials and structures under thermo-mechanical loading, ECCOMAS 2000, Barcelona.

    Google Scholar 

  • Spencer, A. J. M. (1971). Theory of invariants, in E. C. Eringen (ed.), Continuum Physics, Academic Press, New York, pp. 239–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skrzypek, J.J., Kuna-CiskaƂ, H. (2003). Anisotropic Elastic-Brittle-Damage and Fracture Models Based on Irreversible Thermodynamics. In: Skrzypek, J.J., Ganczarski, A.W. (eds) Anisotropic Behaviour of Damaged Materials. Lecture Notes in Applied and Computational Mechanics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36418-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36418-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05587-4

  • Online ISBN: 978-3-540-36418-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics