Skip to main content

Some Results Concerning the Mathematical Treatment of Finite Plasticity

  • Chapter
Deformation and Failure in Metallic Materials

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 10))

Abstract

The initial-boundary value problems arising in the context of finite elasto-plasticity models relying on the multiplicative split F = Fe F p are investigated. First, we present such a model based on the elastic Eshelby tensor. We highlight the behaviour of the system at frozen plastic flow. It is shown how the direct methods of variations can be applied to the resulting boundary value problem. Next the coupling with a viscoplastic flow rule is discussed. With stringent elastic stability assumptions and with a nonlocal extension in space local existence in time can be proved.

Subsequently, a new model is introduced suitable for small elastic strains. A key feature of the model is the introduction of an independent field of elastic rotations R e . An evolution equation for R e is presented which relates R e to F e . The equilibrium equations at frozen plastic flow are now linear elliptic leading to a local existence and uniqueness result without further stability assumptions or other modifications. An extended Korn’s first inequality is used taking the plastic incompatibility of F p into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber HD. (1998) Materials with Memory. Initial-Boundary Value Problems for Constitutive Equations with Internal Variables., volume 1682 of Lecture Notes in Mathematics. Springer, Berlin

    MATH  Google Scholar 

  2. Anthony KH. (1971) Die Theorie der nichtmetrischen Spannungen in Kristallen. Arch. Rat. Mech. Anal., 40:50–78

    Article  MATH  MathSciNet  Google Scholar 

  3. Ball JM. (1977) Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal., 63:337–403

    Article  MATH  Google Scholar 

  4. Ball JM., Marsden JE. (1984) Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Rat. Mech. Anal., 86:251–277

    Article  MATH  MathSciNet  Google Scholar 

  5. Besseling JF., van der Giessen E. (1994) Mathematical Modelling of Inelastic Deformation, volume 5 of Applied Mathematics and Mathematical Computation. Chapman Hall, London

    MATH  Google Scholar 

  6. Bloom F. (1979) Modern Differential Geometric Techniques in the Theory of Continuous Distributions of Dislocations, volume 733 of Lecture Notes in Mathematics. Springer, Berlin

    MATH  Google Scholar 

  7. Bodner SR., Partom Y. (1975) Constitutive equations for elastic-viscoplastic strainhardening materials. J. Appl. Mech., 42:385–389

    Article  Google Scholar 

  8. Carstensen C., Hackl K. (2000) On microstructure occuring in a model of finite-strain elastoplasticity involving a single slip system. ZAMM

    Google Scholar 

  9. Cermelli C., Gurtin ME. (2001) On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids, 49:1539–1568

    Article  MATH  Google Scholar 

  10. Chelminski K. (1998) On self-controlling models in the theory of inelastic material behaviour of metals. Cont. Mech. Thermodyn., 10:121–133

    Article  MATH  MathSciNet  Google Scholar 

  11. Chelminski K. (1999) On monotone plastic constitutive equations with polynomial growth condition. Math. Meth. App. Sc., 22:547–562

    Article  MATH  MathSciNet  Google Scholar 

  12. Dafalias YF. (1984) The plastic spin concept and a simple illustration of its role in finite plastic transformations. Mechanics of Materials, 3:223–233

    Article  Google Scholar 

  13. Dafalias YF. (1987) Issues on the constitutive formulation at large elastoplastic deformations, Part I: Kinematics. Acta Mechanica, 69:119–138

    Article  MATH  Google Scholar 

  14. Dafalias YF. (1998) Plastic spin: necessity or redundancy? Int. J. Plasticity, 14(9) 909–931

    Article  MATH  Google Scholar 

  15. Ebenfeld S. (2002) L2-regularity theory of linear strongly elliptic Dirichlet systems of order 2m with minimal regularity in the coefficients. to appear in Quart. Appl. Math.

    Google Scholar 

  16. Green AE., Naghdi PM. (1965) A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal., 18:251–281

    Article  MATH  MathSciNet  Google Scholar 

  17. Gurtin ME. (2000) Configurational Forces as Basic Concepts of Continuum Physics, volume 137 of Applied Mathematical Science. Springer, Berlin, first edition

    Google Scholar 

  18. Gurtin ME. (2000) On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids, 48:989–1036

    Article  MATH  MathSciNet  Google Scholar 

  19. Han W., Reddy BD. (1999) Plasticity. Mathematical Theory and Numerical Analysis. Springer, Berlin

    MATH  Google Scholar 

  20. Haupt P. (2000) Continuum Mechanics and Theory of Materials. Springer, Heidelberg

    MATH  Google Scholar 

  21. Ionescu IR., Sofonea M. (1993) Functional and Numerical Methods in Viscoplasticity. Oxford Mathematical Monographs. Oxford University Press, Oxford, first edition

    MATH  Google Scholar 

  22. Kondo K. (1955) Geometry of elastic deformation and incompatibility. In K. Kondo, editor, Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, volume 1, Division C, pages 5–17 (361–373). Gakujutsu Bunken Fukyo-Kai,

    Google Scholar 

  23. Kröner E. (1958) Kontinuumstheorie der Versetzungen und Eigenspannungen., volume 5 of Ergebnisse der Angewandten Mathematik. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Kröner E. (1962) Dislocation: a new concept in the continuum theory of plasticity. J. Math. Phys., 42:27–37

    Google Scholar 

  25. Kröner E., Seeger A. (1959) Nichtlineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal., 3:97–119

    Article  MATH  Google Scholar 

  26. Lee EH. (1969) Elastic-plastic deformation at finite strain. J. Appl. Mech., 36:1–6

    Article  MATH  Google Scholar 

  27. Lemaitre J., Chaboche JL. (1985) Mecanique des materiaux solides. Dunod, Paris

    Google Scholar 

  28. Lubarda VD. (2002) Elastoplasticity Theory. CRC Press, London

    MATH  Google Scholar 

  29. Lucchesi M, Podio-Guidugli P. (1988) Materials with elastic range: a theory with a view toward applications. Part I. Arch. Rat. Mech. Anal., 102:23–43

    Article  MATH  MathSciNet  Google Scholar 

  30. Mandel J. (1973) Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Structures, 9:725–740

    Article  MATH  Google Scholar 

  31. Maugin G. (1993) Material Inhomogeneities in Elasticity. Applied Mathematics and Mathematical Computations. Chapman-Hall, London

    MATH  Google Scholar 

  32. Maugin G. (1999) The Thermomechanics of Nonlinear Irreversible Behaviors. Number 27 in Nonlinear Science. World Scientific, Singapore

    MATH  Google Scholar 

  33. Maugin G, Epstein M. (1998) Geometrical material structure of elastoplasticity. Int. J. Plasticity, 14:109–115

    Article  MATH  Google Scholar 

  34. Miehe C. (1992) Kanonische Modelle multiplikativer Elasto-Plastizität. Thermodynamische Formulierung rind numerische Implementation. Habilitationsschrift, Universität Hannover

    Google Scholar 

  35. Miehe C. (1995) A theory of large-strain isotropic thermoplasticity based on metric transformation tensors. Archive Appl. Mech., 66:45–64

    MATH  Google Scholar 

  36. Naghdi PM. (1990) A critical review of the state of finite plasticity. J. Appl. Math. Phys.(ZAMP), 41:315–394

    Article  MATH  MathSciNet  Google Scholar 

  37. Neff P. (2000) Formulation of visco-plastic approximations in finite plasticity for a model of small elastic strains, Part I: Modelling. Preprint 2127, TU Darmstadt

    Google Scholar 

  38. Neff P. (2000) Mathematische Analyse multiplikativer Viskoplastizitäät. Ph.D. Thesis, TU Darmstadt. Shaker Verlag, ISBN:3–8265-7560–1, Aachen

    Google Scholar 

  39. Neff P. (2001) Formulation of visco-plastic approximations in finite plasticity for a model of small elastic strains, Part IIa: Local existence and uniqueness results. Preprint 2138, TU Darmstadt

    Google Scholar 

  40. Neff P. (2002) An extended Korn’s first inequality with discontinuous coefficents. in preparation, Darmstadt University of Technology

    Google Scholar 

  41. Neff P. (2002) Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation. to appear in Cont. Mech. Thermodynamics

    Google Scholar 

  42. Neff P. (2002) Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation. submitted to SIAM J. Math. Anal.

    Google Scholar 

  43. Neff P. (2002) On Korn’s first inequality with nonconstant coefficients, Preprint 2080 TU Darmstadt. Proc. Roy. Soc. Edinb., 132A:221–243

    Article  MATH  MathSciNet  Google Scholar 

  44. Neff P., Wieners C. (2002) Comparison of models for finite plasticity. A numerical study. to appear in Computing and Visualization in Science

    Google Scholar 

  45. Ortiz M., Repetto EA. 1993 Nonconvex energy minimization and dislocation structures in ductile single crystals, manuscript.

    Google Scholar 

  46. Ortiz M., Repetto EA. (1999) Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids, 47:397–462

    Article  MATH  MathSciNet  Google Scholar 

  47. Ortiz M., Repetto EA., Stainier L. (2000) A theory of subgrain dislocation structures. J. Mech. Phys. Solids, 48:2077–2114

    Article  MATH  MathSciNet  Google Scholar 

  48. Ortiz M., Stainier L. (1999) The variational formulation of viscoplastic constitutive updates. Comp. Meth. Appl. Mech. Engrg., 171:419–444

    Article  MATH  MathSciNet  Google Scholar 

  49. Sansour C., Kollmann FG. (1996) On theory and numerics of large viscoplastic deformation. Comp. Meth. Appl. Mech. Engrg., 146:351–369

    Article  Google Scholar 

  50. Silhavy M. (1976) On transformation laws for plastic deformations of materials with elastic range. Arch. Rat. Mech. Anal., 63:169–182

    Article  MathSciNet  Google Scholar 

  51. Simo JC. (1998) Numerical analysis and simulation of plasticity. In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, volume VI. Elsevier, Amsterdam

    Google Scholar 

  52. Simo JC., Hughes JR. (1998) Computational Inelasticity, volume 7 of Interdisciplinary Applied Mathematics. Springer, Berlin

    MATH  Google Scholar 

  53. Simo JC., Ortiz M. (1985) A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comp. Meth. Appl. Mech. Engrg., 49:221–245

    Article  MATH  Google Scholar 

  54. Steinmann P. (1996) Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Engrg. Sci., 34:1717–1735

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neff, P. (2003). Some Results Concerning the Mathematical Treatment of Finite Plasticity. In: Hutter, K., Baaser, H. (eds) Deformation and Failure in Metallic Materials. Lecture Notes in Applied and Computational Mechanics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36564-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36564-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05649-9

  • Online ISBN: 978-3-540-36564-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics