Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 1343 Accesses

Abstract

Depending upon thermodynamic state, materials can exist in a number of different physical phases (e.g., solid, liquid, or gas). Under certain conditions of temperature and pressure, it is possible (for some solids) to transition from one crystalline structure to another. Such transformations in solid materials are referred to as polymorphic transformations. Polymorphic transformations, melting and evaporation of solids are first-order phase transitions. Shock waves can be used to produce a wide range of material states (P, V, T) and establish the conditions for proceeding from one phase to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Funtikov, A.I., and Pavlovskii, M.N., “Shock Compression of Solid Bodies and Polymorphous Transformations. Shock Waves in Solid Bodies,” in Shock Waves and Extreme States of Matter, Nauka Publ., Moscow, 2000, pp. 138–159 [see also, Funtikov, A.I., and Pavlovsky, M.N., “ShockWaves and Polymorphic Phase Transformations in Solids,” in Fortov, V.E., Altshuler, L.V., Trunin, R.F., and Funtikov, A.I., High Pressure Shock Compression of Solids VII, Springer-Verlag, New York, 2004, pp. 197–223].

    Google Scholar 

  2. 2. Altshuler, L.V., “Phase Transitions in Shock Waves,” Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1978, No. 4, pp. 93–103, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 19, No. 4, 1978, pp. 496–505].

    Google Scholar 

  3. 3. Altshuler, L.V., “Use of ShockWaves in High-Pressure Physics,” Uspekhi Fizicheskikh Nauk, Vol. 85, No. 2, 1965, pp. 197–258, [English trans., Soviet Physics Uspekhi, Vol. 8, No. 1, 1965, pp. 52–91].

    Google Scholar 

  4. 4. Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Shock Wave Phenomena in Condensed Matter, Yanuk-K Publ., Moscow, 1996, [see also, Kanel, G.I., Razorenov, S.V., and Fortov, V.E., Shock-Wave Phenomena and the Properties of Condensed Matter, Springer-Verlag, New York, 2004].

    Google Scholar 

  5. 5. Kuznetsov, N.M., “Shock Compression of Solid Bodies and Polymorphous Transformations. Some Issues of Polymorphous Transformations in Shock Waves,” in Shock Waves and Extreme States of Matter, Nauka Publ., Moscow, 2000, pp. 174–198 [see also, Kuznetsov, N.M., “Some Questions of Phase Transition in Shock Waves,” in Fortov, V.E., Altshuler, L.V., Trunin, R.F., and Funtikov, A.I., High-Pressure Shock Compression of Solids VII, Springer-Verlag, New York, 2004, pp. 247–273].

    Google Scholar 

  6. 6. Zeldovich, Ya.B., and Raizer, Yu.P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Nauka Publ., Moscow, 1966, [English trans. Academic Press, NY, Vol. 1 (1966), Vol. 2 (1967); Reprinted in a single volume by Dover Publ., Mineola, NY 2002].

    Google Scholar 

  7. 7. Novikov, S.A., Divnov, I.I., and Ivanov, A.G., “Investigation of the Structure of Compressive Shock Waves in Iron and Steel,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 47, No. 3, 1964, pp. 814–816, [English trans., Soviet Physics JETP, Vol. 20, No. 3, 1965, pp. 545–546].

    Google Scholar 

  8. 8. Ivanov, A.G., and Novikov, S.A., “Rarefaction Shock Waves in Iron and Steel,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 40, No. 6, 1961, pp. 1880–1882, [English trans., Soviet Physics JETP, Vol. 13, No. 6, 1961, pp. 1321–1323].

    Google Scholar 

  9. 9. Ivanov, A.G., Novikov, S.A., and Tarasov, Yu.I., “Fragmentation Phenomena in Iron and Steel Caused by Explosive Shock Wave Interactions,” Fizika Tverdogo Tela, Vol. 4, No. 1, 1962, pp. 249–260, [English trans., Soviet Physics - Solid State, Vol. 4, No. 1, 1962, pp. 177–185].

    Google Scholar 

  10. 10. Funtikov, A.I., “Shock Compression of Solid Bodies. Iron Phase Diagram,” in Shock Waves and Extreme States of Matter, Nauka Publ., Moscow, 2000, pp. 160–173 [see also, Funtikov, A.I., “Phase Diagram of Iron,” in Fortov, V.E., Altshuler, L.V., Trunin, R.F., and Funtikov, A.I., High-Pressure Shock Compression of Solids VII, Springer-Verlag, New York, 2004, pp. 226–246].

    Google Scholar 

  11. 11. Batkov, Yu.V., German, V.N., Osipov, R.S., Novikov, S.A., and Tsyganov, V.A., “Melting of Lead in Shock Compression,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1988, No. 1, pp. 149–151, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 29, No. 1, 1988, pp. 139–141].

    Google Scholar 

  12. 12. Altshuler, L.V., Bakanova, A.A., Bushman, A.V., Dudoladov, I.P., and Zubarev, V.N., “Evaporation of Shock-Compressed Lead in Release Waves,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 73, 1977, pp. 1866–1872, [English trans., Soviet Physics JETP, Vol. 46, No. 5, 1977, pp. 980–983].

    Google Scholar 

  13. 13. Bakanova, A.A., Dudoladov, I.P., Zhernokletov, M.V., Zubarev, V.N., and Simakov, G.V., “Vaporization of Shock-Compressed Metals on Expansion,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1983, No. 2, pp. 76–81, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 24, No. 2, 1983, pp. 204–209].

    Google Scholar 

  14. 14. Bushman, A.V., Glushak, B.L., Gryaznov, V.K., Zhernokletov, M.V., Krasyuk, I.K., Pashinin, P.P., Prokhorov, A.M., Ternovoi, V.Ya., Filimonov, A.S., and Fortov, V.E., “Shock Compression and Adiabatic Decompression of a Dense Bismuth Plasma at Extreme Thermal Energy Densities,” Pisma, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 44, No. 8, 1986, pp. 375–377, [English trans., JETP Letters, Vol. 44, No. 8, 1986, pp. 480–483].

    Google Scholar 

  15. 15. Altshuler, L.V., and Bakanova, A.A., “Electronic Structure and Compressibility of Metals at High Pressures,” Uspekhi Fizicheskikh Nauk, Vol. 96, No. 2, 1968, pp. 193–215, [English trans., Soviet Physics Uepekhi, Vol. 11, No. 5, 1969, pp. 678–689].

    Google Scholar 

  16. 16. Brish, A.A., Tarasov, M.S., and Tsukerman, V.A., “Electrical Conductivity of Dielectrics in Strong Shock Waves,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 38, 1960, pp. 22–25, [English trans., Soviet Physics JETP, Vol. 11, No. 1, 1960, pp. 15–17].

    Google Scholar 

  17. 17. Brish, A.A., Tarasov, M.S., and Tsukerman, V.A., “Electric Conductivity of the Explosion Products of Condensed Explosives,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 37, 1959, pp. 1544–1550, [English trans., Soviet Physics JETP, Vol. 10, No. 6, 1960, pp. 1095–1100].

    Google Scholar 

  18. 18. Alder, B.J., and Christian, R.H., “Metallic Transition in Ionic and Molecular Crystals,” Physical Review, Vol. 104, No. 2–15, 1956, pp. 550–551.

    Article  Google Scholar 

  19. 19. Altshuler, L.V., Kuleshova, L.V., and Pavlovskii, M.N., “The Dynamic Compressibility, Equation of State, and Electrical Conductivity of Sodium Chloride at High Pressures,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 39, 1960, pp. 16–24, [English trans., Soviet Physics JETP, Vol. 12, No. 1, 1961, pp. 10–15].

    Google Scholar 

  20. 20. Grigorev, F.V., Kirillov, G.A., Kormer, S.V., et al., “Study of Shock-Compressed Ionic Crystal Electric Conductivity and Absorption in 150-800 kbar Pressure Range,” proc., 2 nd All-Russian Symposium on Combustion and Explosion, Yerevan, 1965, pp. 259–262.

    Google Scholar 

  21. 21. Grigorev, F.V., Kirillov, G.A., Kormer, S.V., et al., “Compressibility, Temperature, Electric Conductivity, and Absorptivity of Shock-Compressed Carbon Tetrachloride,” proc., 2 nd All-Russian Symposium on Combustion and Explosion, Yerevan, 1965, pp. 255–257.

    Google Scholar 

  22. 22. Kormer, S.B., Sinitsyn, M.V., Kirillov, G.A., and Popova, L.T., “An Experimental Determination of the Light Absorption Coeffcient in Shock-Compressed NaCl. The Absorption and Conductivity Mechanism,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 49, 1965, pp. 135–147, [English trans., Soviet Physics JETP, Vol. 22, No. 1, 1966, pp. 97–105].

    Google Scholar 

  23. 23. van Thiel, M., and Alder, B.J., “Shock Compression of Argon,” Journal of Chemical Physics, Vol. 44, No. 3, 1966, pp. 1056–1065.

    Article  Google Scholar 

  24. 24. Nelson, D.A., Jr., and Ruo., A.L., “Metallic Xenon at Static Pressures,” Physical Review Letters, Vol. 42, No. 6, 1979, pp. 383–386.

    Article  Google Scholar 

  25. 25. Radousky, H.B., Nellis, W.J., Ross, M., Hamilton, D.C., and Mitchell, A.C., “Molecular Dissociation and Shock-Induced Cooling in Fluid Nitrogen at High Densities and Temperatures,” Physical Review Letters, Vol. 57, No. 19, 1986, pp. 2419–2422.

    Article  Google Scholar 

  26. 26. Nellis, W.J., Radousky, H.B., Hamilton, D.C., Mitchell, A.C., Holmes, N.C., Christianson, K.B., and van Thiel, M., “Equation-of-State, Shock-Temperature, and Electrical-Conductivity Data of Dense Fluid Nitrogen in the Region of the Dissociative Phase Transition,” Journal of Chemical Physics, Vol. 94, No. 3, 1991, pp. 2244–2257.

    Article  Google Scholar 

  27. 27. Gatilov, L.A., Glukhodedov, V.D., Grigorev, F.V., Kormer, S.B., Kuleshova, L.V., and Mochalov, M.A., “Electrical Conductivity of Shock Compressed Condensed Argon at Pressures from 20 to 70 GPa,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1985, No. 1, pp. 99–102, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 26, No. 1, 1985, pp. 88–91].

    Google Scholar 

  28. 28. Mochalov, M.A., Glukhodedov, V.D., Kirshanov, S.I., and Lebedeva, T.S., “Electric Conductivity of Liquid Argon, Krypton, and Xenon Under Shock Compression up to Pressure of 90 GPa,” Shock Compression of Condensed Matter - 1999, Furnish, M.D., Chhabildas, L.C., and Hixson, R.S., eds., AIP Press, Melville, NY, 2000.

    Google Scholar 

  29. 29. Urlin, V.D., Mochalov, M.A., and Mikhailova, O.L., “Liquid Xenon Study Under Shock and Quasi-Isentropic Compression,” High Pressure Research, Vol. 8, No. 4, 1992, pp. 595–605.

    Article  Google Scholar 

  30. 30. Hamilton, D.C., Nellis, W.J., Mitchell, A.C., Ree, F.H., and van Thiel, M., “Electrical Conductivity and Equation of State of Shock-Compressed Liquid Oxygen,” Journal of Chemical Physics, Vol. 88, No. 8, 1988, pp. 5042–5050.

    Article  Google Scholar 

  31. 31. Weir, S.T., Mitchell, A.C., and Nellis, W.J., “Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar),” Physical Review Letters, Vol. 76, No. 11, 1996, pp. 1860–1863.

    Article  Google Scholar 

  32. 32. Kiler, R., “Electric Conductivity of Condensed Matter at High Pressures,” in High Energy Density Physics, Mir Publ., Moscow, 1974.

    Google Scholar 

  33. 33. Kuleshova, L.V., “Electrical Conductivity of Boron Nitride, Potassium Chloride, and Polytetraflouroethylene Behind a Shock-Wave Front,” Fizika Tverdogo Tela, Vol. 11, No. 5, 1969, pp. 1085–1091, [English trans., Soviet Physics - Solid State, Vol. 11, No. 5, 1969, pp. 886–890].

    Google Scholar 

  34. 34. Kuleshova, L.V., and Pavlovskii, M.N., “Dynamic Compressibility, Electrical Conductivity, and Sound Velocity Behind a Shock Front in Kaprolon,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1977, No. 5, pp. 122–126, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 18, No. 5, 1977, pp. 689–692].

    Google Scholar 

  35. 35. Gatilov, L.A., and Kuleshova, L.V., “Measurement of High Electrical Conductivity in Shock-Compressed Dielectrics,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1981, No. 1, pp. 136–140, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 22, No. 1, 1981, pp. 114–117].

    Google Scholar 

  36. 36. Huang, S.S., and Freeman, G.R., “Effect of Density on the Total Ionization Yields in X-Irradiated Argon, Krypton, and Xenon,” Canadian Journal of Chemistry, Vol. 55, No. 11, 1977, pp. 1838–1845.

    Article  Google Scholar 

  37. 37. Asaf, U., and Steinberger, I.T., “Photoconductivity and Electron Transport Parameters in Liquid and Solid Xenon,” Physical Review B, Vol. 10, No. 10, 1974, pp. 4464–4468.

    Article  Google Scholar 

  38. 38. Glukhodedov, V.D., Kirshanov, S.I., Lebedeva, T.S., and Mochalov, M.A., “Properties of Shock-Compressed Liquid Krypton at Pressures of up to 90 GPa,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 116, No. 2, 1999, pp. 551–562, [English trans., Journal of Experimental and Theoretical Physics, Vol. 89, No. 2, 1999, pp. 292–298].

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Glushak, B., Mochalov, M. (2006). Studies of Phase Transformations. In: Zhernokletov, M.V., Glushak, B.L. (eds) Material Properties under Intensive Dynamic Loading. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36845-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36845-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36844-1

  • Online ISBN: 978-3-540-36845-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics