Skip to main content

A Numerical Study on the Characteristic Flow Structures of a Micro-Breaking Wind Wave

  • Chapter
Transport at the Air-Sea Interface

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 871 Accesses

Abstract

We present results from numerical simulation of an aqueous turbulent boundary layer underneath a dynamic air-water interface and driven by wind stress and pressure. The simulation results reveal distinct surface and flow structures of micro-breaking wind waves, including a bore-like crest preceded by parasitic capillary waves riding along the forward face and elongated streamwise velocity streaks in the backward face, and confirm the observations in the laboratory and field experiments. The results also highlight the potential impacts caused by the short-wavelength capillaries on the gravity dominant free-surface flows, and consequently reveal the necessity in incorporating such microscale processes in the parameterizations of fluxes across the air-sea interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banner M.L., Phillips O.M. (1974) On the incipient breaking of small scale waves. J Fluid Mech 65:647–656

    Article  Google Scholar 

  2. Banner M.L., Peregrine D.H. (1993) Wave breaking in deep water. Annu Rev Fluid Mech 25:373–397

    Article  Google Scholar 

  3. Banner M.L., Peirson W.L. (1998) Tangential stress beneath winddriven air-water interfaces. J Fluid Mech 364:115–145

    Article  Google Scholar 

  4. Csanady G.T. (1990) The role of breaking wavelets in air-sea gas transfer. J Geophys Res 95:749–759

    Article  Google Scholar 

  5. Ebuchi N., Kawamura H., Toba Y. (1987) Fine structure of laboratory wind-wave surfaces studied using an optical method. Bound-Layer Meteor 39:133–151

    Article  Google Scholar 

  6. Fedorov A.V., Melville W.K. (1998) Nonlinear gravity-capillary waves with forcing and dissipation. J Fluid Mech 354:1–42

    Article  Google Scholar 

  7. Jessup A.T., Zappa C.J., Yeh H. (1997) Defining and quantifying microscale wave breaking with infrared imagery. J Geophys Res 102:23,145–23,153

    Article  Google Scholar 

  8. Komori S., Nagaosa R., Murakami Y. (1993) Turbulence structure and mass transfer across a sheared air-water interface in wind-driven turbulence. J Fluid Mech 249:161–183

    Article  CAS  Google Scholar 

  9. Longuet-Higgins M. (1992) Capillary rollers and bores. J Fluid Mech 240:659–679

    Article  Google Scholar 

  10. Okuda K. (1982) Internal flow structure of short wind waves Part 1. On the internal vorticity structure. J Oceanogr Soc Japan 38:28–42

    Article  Google Scholar 

  11. Peirson W.L., Banner M.L. (2003) Aqueous surface layer flows induced by microscale breaking wind waves. J Fluid Mech 479:1–38

    Article  Google Scholar 

  12. Siddiqui M.H.K., Loewen M.R., Richardson C., Asher W.E., Jessup A.T. (2001) Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves. Phys Fluids 13:1891–1903

    Article  CAS  Google Scholar 

  13. Sullivan P.P., McWilliams J.C., Melville W.K. (2004) The oceanic boundary layer driven by wave breaking with stochastic variability. Part.1 Direct numerical simulations. J Fluid Mech 507:143–174

    Article  Google Scholar 

  14. Tsai W.-T., Chen S.-M., Moeng C.-H. (2005) A numerical study on the evolution and structure of a stress-driven, free-surface turbulent shear flow. J Fluid Mech 545:163–192

    Article  CAS  Google Scholar 

  15. Tsai W.-T., Hung L.-P. (2006) Three-dimensional modeling of smallscale processes in the upper boundary layer bounded by a dynamic ocean surface. To appear in J Geophys Res

    Google Scholar 

  16. Tsai W.-T. (1998) A numerical study of the evolution and structure of a turbulent shear layer under a free surface. J Fluid Mech 354:239–276

    Article  Google Scholar 

  17. Tsai W.-T., Chen S.-M., Lin M.-Y., Hung L.-P. (2003) Molecular sublayers beneath the air-sea interface relative to momentum, heat and gas transports. Geophys Res Lett 30, 1968, doi:10.1029/2003GL018164

    Google Scholar 

  18. Yoshikawa I., Kawamura H., Okuda K., Toba Y. (1988) Turbulent structure in water under laboratory wind waves. J Oceangr Soc Japan 44:143–156

    Article  Google Scholar 

  19. Zappa C.J., Asher W.E., Jessup A.T. (2001) Microscale wave breaking and air-water gas transfer. J Geophys Res 106:9385–9391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Tsai, Wt., Hung, Lp. (2007). A Numerical Study on the Characteristic Flow Structures of a Micro-Breaking Wind Wave. In: Garbe, C.S., Handler, R.A., Jähne, B. (eds) Transport at the Air-Sea Interface. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36906-6_11

Download citation

Publish with us

Policies and ethics