Skip to main content

Q-controlled Dynamic Force Microscopy in Air and Liquids

  • Chapter
Applied Scanning Probe Methods V

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Quate CF, Gerber Ch (1986) Atomic forcemicroscopy. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  2. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J Appl Phys 61:4723–4729

    Article  CAS  Google Scholar 

  3. Zhong QD, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692

    Article  CAS  Google Scholar 

  4. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley L, Elings VB (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64:1738–1740

    Article  CAS  Google Scholar 

  5. Putman CAJ, Vanderwerf KO, Degrooth BG, Vanhulst NF, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl Phys Lett 64:2454–2456

    Article  CAS  Google Scholar 

  6. Anczykowski B, Cleveland JP, Krüger D, Elings VB, Fuchs H (1998) Analysis of the interaction mechanisms in dynamicmode SFM by means of experimental data and computer simulation. Appl Phys A 66:S885–S889

    Article  CAS  Google Scholar 

  7. Tamayo J, Humphris ADL, Miles MJ (2000) Piconewton regime dynamic force microscopy in liquid. Appl Phys Lett 77:582–584

    Article  CAS  Google Scholar 

  8. Humphris ADL, Tamayo J, Miles MJ (2000) Active quality factor control in liquids for force spectroscopy. Langmuir 16:7891–7894

    Article  CAS  Google Scholar 

  9. Grant A and McDonnell L (2003) Anon-contact mode scanning forcemicroscope optimised to image biological samples in liquid. Ultramicroscopy 97:177–184

    Article  CAS  Google Scholar 

  10. Ebeling D, Hölscher H, Fuchs H, Anczykowski B, Schwarz UD (2006) Imaging of biomaterials in liquids: a comparison between conventional and Q-controlled amplitude modulation (“tapping mode”) atomic force microscopy. Nanotechnology 17:S221–S226

    Article  CAS  Google Scholar 

  11. Sulchek T, Hsieh R, Adams JD, Yaralioglu GG, Minne SC, Quate CF, Cleveland JP, Atalar A, Adderton DM (2000) High-speed tapping mode imaging with active Q control for atomic force microscopy. Appl Phys Lett 76:1473–1475

    Article  CAS  Google Scholar 

  12. Sulchek T, Yaralioglu GG, Quate CF, Minne SC (2002) Characterization and optimization of scan speed for tapping-mode atomic force microscopy. Rev Sci Inst 73:2928–2936

    Article  CAS  Google Scholar 

  13. Antognozzi M, Szczelkun MD, Humphris ADL, Miles MJ (2003) Increasing shear force microscopy scanning rate using active quality-factor control. Appl Phys Lett 82:2761–2763

    Article  CAS  Google Scholar 

  14. Lei FH, Nicolas J-L, Troyon M, Sockalingum GD, Rubin S, Manfait M (2003) Shear force detection by using bimorph cantilever with enhanced Q-factor. J Appl Phys 93:2236–2243

    Article  CAS  Google Scholar 

  15. Yamanaka K, Maruyama Y, Tsuji T, Nakamoto K (2001) Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy. Appl Phys Lett 78:1939–1941

    Article  CAS  Google Scholar 

  16. Fukuda K, Irihama H, Tsuji T, Nakamoto K, Yamanaka K (2003) Sharperning contact resonance spectra in UAFM using Q-control. Surf Sci 532–535:1145

    Article  CAS  Google Scholar 

  17. Hölscher H (2002) Q-controlled dynamic force spectroscopy. Surf Sci 515:21–26

    Article  Google Scholar 

  18. Gao S, Chi LF, Lenert S, Anczykowski B, Niemeyer C, Adler M, Fuchs H (2001) Highquality mapping of DNA-protein complexes by dynamic scanning force microscopy. Chem Phys Chem 6:384–388

    Google Scholar 

  19. Humphris ADL, Round AN, Miles MJ (2001) Enhanced imaging of DNA via active quality factor control. Surf Sci 491(3):468–472

    Article  CAS  Google Scholar 

  20. Tamayo J, Humphris ADL, Owen RJ, Miles MJ (2001) High-Q dynamic force microscopy in liquid and its application to living cells. Biophys J 81:526–537

    CAS  Google Scholar 

  21. Pignataro B, Chi LF, Gao S, Anczykowski B, Niemeyer C, Adler M, Fuchs H (2002) Dynamic force microscopy study of self-assembeld dna-protein nanostructures. Appl Phys A 74:447

    Article  CAS  Google Scholar 

  22. Jäggi RD, Franco-Obregon A, Studerus P, Ensslin K (2001) Detailed analysis of forces influencing lateral resolution for Q-control and tapping mode. Appl Phys Lett 79:135–137

    Article  CAS  Google Scholar 

  23. Rodriguez TR, Garcia R (2003) Theory of Q-control in atomic force microscopy. Appl Phys Lett 82:4821–4823

    Article  CAS  Google Scholar 

  24. Kokavecz J, Horváth ZL, Melcher A (2004) Dynamical properties of the Q-controlled atomic force microscope. Appl Phys Lett 85:3232–3234

    Article  CAS  Google Scholar 

  25. Tamayo J (2005) Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control. J Appl Phys 97:044903

    Article  CAS  Google Scholar 

  26. Hölscher H, Ebeling D, Schwarz UD (2006) Theory of Q-controlled dynamic force microscopy in air. J Appl Phys 99:084311

    Article  CAS  Google Scholar 

  27. Press WH, Tekolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C. Cambridge University Press

    Google Scholar 

  28. Dürig U (2000) Interaction sensing in dynamic force microscopy. N J of Phys 2:5.1–5.12

    Google Scholar 

  29. Hölscher H, Gotsmann B, Allers W, Schwarz UD, Fuchs H, Wiesendanger R (2001) Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique. Phys Rev B 64:075402

    Article  CAS  Google Scholar 

  30. Sader JE, Uchihashi T, Farrell A, Higgins MJ, Nakayama Y, Jarvis SP (2005) Quantitative force measurements using frequency modulation atomic force microscopy — theoretical foundations. Nanotechnology 16:S94–S101

    Article  CAS  Google Scholar 

  31. Aimé JP, Boisgard R, Nony L, Couturier G (1999) Nonlinear dynamic behavior of an oscillating tip-microlever system and contrast at the atomic scale. Phys Rev Lett 82:3388–3391

    Article  Google Scholar 

  32. García R, San Paulo A (1999) Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B 60:4961–4967

    Article  Google Scholar 

  33. Lee SI, Howell SW, Raman A, Reifenberger R (2002) Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment. Phys Rev B 66:115409

    Article  CAS  Google Scholar 

  34. Zitzler L, Herminghaus S, Mugele F (2002) Capillary forces in tapping mode atomic force microscopy. Phys Rev B 66:155436

    Article  CAS  Google Scholar 

  35. Stark RW, Schitter G, and Stemmer A (2003) Tuning the interaction forces in tapping mode atomic force microscopy. Phys Rev B 68:085401

    Article  CAS  Google Scholar 

  36. Schwarz UD (2003) A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J Coll Interf Sci 261:99–106

    Article  CAS  Google Scholar 

  37. Anczykowski B, Krüger D, Fuchs H (1996) Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. Phys Rev B 53:15485–15488

    Article  CAS  Google Scholar 

  38. García R, San Paulo A (2000) Dynamics of a vibrating tip near or in intermittent contact with a surface. Phys Rev B 61(20):R13381–R13384

    Article  Google Scholar 

  39. San Paulo A, García R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: Attractive and repulsive tip-sample interaction regimes. Biophys J 78:1599–1605

    Article  CAS  Google Scholar 

  40. San Paulo A, García R (2002) Unifying theory of tapping-mode atomic-force microscopy. Phys Rev B 66:041406

    Article  CAS  Google Scholar 

  41. Weisenhorn AL, Maivald P, Butt HJ, Hansma PK (1992) Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys Rev B 45:11226–11232

    Article  Google Scholar 

  42. Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, London

    Google Scholar 

  43. Ohnesorge F, Binnig G (1993) True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260:1451–1456

    Article  CAS  Google Scholar 

  44. Engel A, Müller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nature Struct Biol 7:715–718

    Article  CAS  Google Scholar 

  45. Bielefeldt H, Giessibl FJ (1999) A simplified but intuitive analytical model for intermittent-contact-mode force microscopy based on hertzian mechanics. Surf Sci Lett 440:L863–L867

    Article  CAS  Google Scholar 

  46. Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668–673

    Article  Google Scholar 

  47. Schirmeisen A, Anczykowski B, Fuchs H (2004) Dynamic force microscopy. In Bhushan B, Fuchs H, and Hosaka S, editors, Applied Scanning Probe Methods, pages 3–39, Springer

    Google Scholar 

  48. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    Article  CAS  Google Scholar 

  49. Hartig M, Chi LF, Liu XD, Fuchs H (1998) Dependence of the measured monolayer height on applied forces in scanning force microscopy. Thin Solid Films 327–329:262–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hölscher, H., Ebeling, D., Schwarz, U.D. (2007). Q-controlled Dynamic Force Microscopy in Air and Liquids. In: Bhushan, B., Kawata, S., Fuchs, H. (eds) Applied Scanning Probe Methods V. NanoScience and Technology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37316-2_4

Download citation

Publish with us

Policies and ethics