Skip to main content

Formal Genetics of Humans: Modes of Inheritance*

  • Chapter
Vogel and Motulsky's Human Genetics

Abstract

Mendel’s fundamental discoveries are usually summarized in three laws:

1. Crosses between organisms homozygous for two different alleles at one gene locus lead to genetically identical offspring (F1 generation), heterozygous for this allele. It is unimportant which of the two homozygotes is male and which is female (law of uniformity and reciprocity). Such reciprocity applies only for genes not located on sex chromosomes.

2. When these F1 heterozygotes are crossed with each other (intercross), various genotypes segregate: one-half are heterozygous again, and one-quarter are homozygous for each of the parental types. This segregation 1:2:1 is repeated after crossing of heterozygotes in the following generations, whereas the two types of homozygotes breed pure. As noted previously (Chap. 1), Mendel interpreted this result correctly, assuming formation of two types of germ cells with a 1:1 ratio in heterozygotes (law of segregation and law of purity of gametes).

3. When organisms differing in more than one gene pair are crossed, every single gene pair segregates independently, and the resulting segregation ratios follow the statistical law of independent segregation (law of free combination of genes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armour CM, McCready ME, Baig A, Hunter AG, Bulman DE (2002) A novel locus for brachydactyly type A1 on chromosome 5p13.3–p13.2. J Med Genet 39:186–188

    Article  CAS  PubMed  Google Scholar 

  2. Badano JL, Katsanis N (2002) Beyond Mendel: an evolving view of human genetic disease transmission. Nat Rev Genet 3:779–789

    Article  CAS  PubMed  Google Scholar 

  3. Bates GP (2005) History of genetic disease: the molecular genetics of Huntington disease — a history. Nat Rev Genet 6:766–773

    Article  CAS  PubMed  Google Scholar 

  4. Beaudet AL, Perciaccante RG, Cutting GR (1991) Homozygous nonsense mutation causing cystic fibrosis with uniparental disomy. Am J Hum Genet 48:1213

    CAS  PubMed  Google Scholar 

  5. Becker PE (1953) Dystrophia musculorum progressiva. Thieme, Stuttgart

    Google Scholar 

  6. Becker PE (1972) Neues zur Genetik und Klassifikation der Muskeldystrophien. Hum Genet 17:1–22

    Article  CAS  Google Scholar 

  7. Becker PE (ed) (1964–1976) Humangenetik. Ein kurzes Handbuch in fünf Bänden. Thieme, Stuttgart

    Google Scholar 

  8. Bell J (1934) Huntington's chorea. Treasury of human inheritance 4. Galton Laboratory

    Google Scholar 

  9. Bennett T (1975) The T-locus of the mouse. Cell 6:441–454

    Article  Google Scholar 

  10. Bernstein F (1925) Zusammenfassende Betrachtungen über die erblichen Blutstrukturen des Menschen. Z Indukt Abstamm Vererbungsl 37:237

    Article  Google Scholar 

  11. Bhende YM, Deshpande CK, Bhata HM, Sanger R, Race RR, Morgan WTJ, Watkins WM (1952) A ”new” blood-group character related to the ABO system. Lancet 1:903–904

    CAS  PubMed  Google Scholar 

  12. Brook JD, McCurrach ME, Harley HG et al (1992) Molecular 5 basis of myotonic dystrophy. Cell 68:799–808

    Article  CAS  PubMed  Google Scholar 

  13. Carney G, Seedburgh D, Thompson B, Campbell DM, MacGillivray I, Timlin D (1979) Maternal height and twinning. Ann Hum Genet 43:55–59

    Google Scholar 

  14. Castori M, Covaciu C, Paradisi M, Zambruno G (2009) Clinical and genetic heterogeneity in keratosis follicularis spinulosa decalvans. Eur J Med Genet 52:53–58

    Article  PubMed  Google Scholar 

  15. Ceppellini R, Dunn LC, Turri M (1955) An interaction between alleles at the Rh locus in man which weakens the reactivity of the Rho factor (Du). Proc Natl Acad Sci USA 41:283–288

    Article  CAS  PubMed  Google Scholar 

  16. Collaco JM, Cutting GR (2008) Update on gene modifiers in cystic fibrosis. Curr Opin Pulm Med 14:559–566

    Article  PubMed  Google Scholar 

  17. Cuénot L (1905) Les races pures et leurs combinaisons chez les souris. Arch Zool Exp Genet 3:123–132

    Google Scholar 

  18. De Vries DD, de Wijs IJ, Wolff G et al (1993) X-linked myo-clonus epilepsy explained as a maternally inherited mito-chondrial disorder. Hum Genet 91:51–54

    Article  PubMed  Google Scholar 

  19. Dorn H (1959) Xeroderma pigmentosum. Acta Genet Med Gemellol (Roma) 8:395–408

    CAS  Google Scholar 

  20. Engel E (1993) Uniparental disomy revisited: the first twelve years. Am J Med Genet 46:670–674

    Article  CAS  PubMed  Google Scholar 

  21. Engel E (1980) A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet 6:137–143

    Article  CAS  PubMed  Google Scholar 

  22. Farabee (1905) Inheritance of digital malformations in man. In: Papers of the peabody museum for american archeology and ethnology, vol 3. Harvard University Press, Cambridge/ MA, 69

    Google Scholar 

  23. Falush D, Almqvist EW, Brinkmann RR, Iwasa Y, Hayden MR (2000) Measurement of mutational flow implies both a high new-mutation rate for Huntington disease and substantial underascertainment of late-onset cases. Am J Hum Genet 68:373–385

    Article  Google Scholar 

  24. Feller W (1970/71) An introduction to probability theory and its applications, 2nd edn. Wiley, New York

    Google Scholar 

  25. Fleischer B (1918) Über myotonische Dystrophie mit Katarakt. Grafes Arch Ophthalmol 96:91–133

    Article  Google Scholar 

  26. Fu Y-H, Pizzuti A, Fenwick RG et al (1992) An unstable triplet repeat in a gene related to myotonic dystrophy. Science 255:1256–1258

    Article  CAS  PubMed  Google Scholar 

  27. Gartler SM, Francke U (1975) Half chromatid mutations: Transmission in humans? Am J Hum Genet 27:218–223

    CAS  PubMed  Google Scholar 

  28. Gaul LE (1953) Heredity of multiple benign cystic epithe-lioma. Arch Dermatol Syph 68:517

    CAS  Google Scholar 

  29. Gerard G, Vitrac D, Le Pendu J, Muller A, Oriol R (1982) H-deficient blood groups (Bombay) of Reunion island. Am J Hum Genet 34:937–947

    CAS  PubMed  Google Scholar 

  30. Goldfarb LG, Petersen RB, Tabatan M et al (1992) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258:806–808

    Article  CAS  PubMed  Google Scholar 

  31. Grønskov K, Ek J, Brondum-Nielsen K (2007) Oculocutaneous albinism. Orphanet J Rare Dis 2:43

    Article  PubMed  Google Scholar 

  32. Hadorn E (1955) Developmental genetics and lethal factors. Wiley, London

    Google Scholar 

  33. Haldane JBS (1941) The relative importance of principal and modifying genes in determining some human diseases. J Genet 41:149–157

    Article  Google Scholar 

  34. Hardy GH (1908) Mendelian proportions in a mixed population. Science 28:49–50

    Article  PubMed  CAS  Google Scholar 

  35. Harley HG, Rundle SA, Reardon W et al (1992) Unstable DNA sequence in myotonic dystrophy. Lancet 339:1125–1128

    Article  CAS  PubMed  Google Scholar 

  36. Harris H (1948) A sex-limiting modifying gene in diaphy-seal aclasis (multiple exostoses). Ann Eugen 14:165–170

    PubMed  Google Scholar 

  37. Harris H (1980) The principles of human biochemical genetics, 4 th edn. North-Holland, Amsterdam

    Google Scholar 

  38. Haws DV, McKusick VA (1963) Farabee's brachydactylous kindred revisited. Johns Hopkins Med J 113:20–30

    CAS  Google Scholar 

  39. Hilgert N, Smith RJ, Van Camp G (2009) Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics? Mutat Res 681:189–196

    Article  CAS  PubMed  Google Scholar 

  40. Huoponen K, Lamminen T, Juvonen V et al (1993) The spectrum of mitochondrial DNA mutations in families with Leber hereditary optical neuroretinopathy. Hum Genet 92:379–384

    Article  CAS  PubMed  Google Scholar 

  41. HYP Consortium (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypo-phosphatemic rickets. Nat Genet 11:130–136

    Article  Google Scholar 

  42. Kajiwara K, Berson EL, Dryja TP (1994) Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264:1604–1608

    Article  CAS  PubMed  Google Scholar 

  43. Katsanis N et al (2001) Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293:2256–2259

    Article  CAS  PubMed  Google Scholar 

  44. Kirkpatrick TJ, Au KS, Mastrobattista JM, McCready ME, Bulman DE, Northrup H (2003) Identification of a mutation in the Indian Hedgehog (IHH) gene causing brachydactyly type A1 and evidence for a third locus. J Med Genet 40:42–44

    Article  CAS  PubMed  Google Scholar 

  45. Koller S (1940) Methodik der menschlichen Erbforschung. II. Die Erbstatistik in der Familie. In: Just G, Bauer KH, Hanhart E, Lange J (eds) Methodik, Genetik der Gesamtperson. Springer, Berlin, pp 261–284 Handbuch der Erbbiologie des Menschen, vol 2

    Google Scholar 

  46. Landsteiner K (1900) Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentralbl Bakteriol 27:357–362

    Google Scholar 

  47. Lenz W (1961) Zur Genetik der Incontinentia pigmenti. Ann Paediatr (Basel) 196:141

    Google Scholar 

  48. Lenz W (1975) Half chromatid mutations may explain incontinentia pigmenti in males. Am J Hum Genet 27:690–691

    CAS  PubMed  Google Scholar 

  49. Lenz W (1983) Medizinische Genetik, 6 th edn. Thieme, Stuttgart

    Google Scholar 

  50. McCready ME, Sweeney E, Fryer AE et al (2002) A novel mutation in the IHH gene causes brachydactyly type A1: a 95-year-old mystery resolved. Hum Genet 111:368–375

    Article  CAS  PubMed  Google Scholar 

  51. McCready ME, Grimsey A, Styer T, Nikkel SM, Bulman DE (2005) A century later Farabee has his mutation. Hum Genet 117:285–287

    PubMed  Google Scholar 

  52. McKusick VA (1995) Mendelian inheritance in man, 11 th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  53. Milch RA (1959) A preliminary note of 47 cases of alcapto-nuria occurring in 7 interrelated Dominical families, with an additional comment on two previously reported pedigrees. Acta Genet (Basel) 9:123–126

    CAS  Google Scholar 

  54. Mohr OL, Wriedt C (1919) A new type of hereditary brachy-phalangy in man. Carnegie Inst Publ 295:1–64

    Google Scholar 

  55. Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  CAS  PubMed  Google Scholar 

  56. Mühlmann WE (1930) Ein ungewöhnlicher Stammbaum über Taubstummheit. Arch Rassenbiol 22:181–183

    Google Scholar 

  57. Myers RH et al (1993) De novo expansion of a (CAG)n repeat in sporadic Huntington's disease. Nature Genet 5:168–173

    Article  CAS  PubMed  Google Scholar 

  58. Nicholls RD, Saitoh S, Horsthemke B (1998) Imprinting in Prader-Willi and Angelman syndromes. Trends Genet 14:194–200

    Article  CAS  PubMed  Google Scholar 

  59. Ollendorff-Curth (1958) Arch Derm Syph 77:342

    Google Scholar 

  60. Ott J (1977) Counting methods (EM algorithm) in human pedigree analysis. Linkage and segregation analysis. Ann Hum Genet 40:443–454

    CAS  PubMed  Google Scholar 

  61. Pauli RM (1983) Editorial comment: dominance and homozygosity in man. Am J Med Genet 16:455–458

    Article  CAS  PubMed  Google Scholar 

  62. Pearson K (1904) On the generalized theory of alternative inheritance with special references to Mendel's law. Philos Trans R Soc 203:53–86

    Article  Google Scholar 

  63. Penrose LS (1947/49) The problem of anticipation in pedigrees of dystrophia myotonica. Ann Eugen 14:125–132

    Google Scholar 

  64. Pola V, Svojitka J (1957) Klassische Hämophilie bei Frauen. Folia Haematol (Leipz) 75:43–51

    CAS  Google Scholar 

  65. Race RR, Sanger R (1975) Blood groups in man, 6 th edn. Blackwell, Oxford

    Google Scholar 

  66. Reik W (1989) Genomic imprinting and genetic disorders in man. Trends Genet 5:331–336

    Article  CAS  PubMed  Google Scholar 

  67. Siemens HW (1925) Über einen, in der menschlichen Pathologie noch nicht beobachteten Vererbungsmodus: dominant geschlechtsgebundene Vererbung. Arch Rassenbiol 17:47–61

    Google Scholar 

  68. Smith CAB (1956/7) Counting methods in genetical statistics. Ann Hum Genet 21:254–276

    Article  Google Scholar 

  69. Smith CAB (1970) A note on testing the Hardy-Weinberg law. Ann Hum Genet 33:377

    Article  Google Scholar 

  70. Snyder LF, Doan CA (1944) Is the homozygous form of multiple teleangiectasia lethal? J Lab Clin Med 29:1211–1216

    Google Scholar 

  71. Spence JE et al (1988) Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet 42:217–226

    CAS  PubMed  Google Scholar 

  72. Stern C (1957) The problem of complete Y-linkage in man. Am J Hum Genet 9:147–165

    CAS  PubMed  Google Scholar 

  73. Stevens WL (1950) Statistical analysis of the AB0 blood groups. Hum Biol 22:191–217

    CAS  PubMed  Google Scholar 

  74. Stevenson RE, Brasington CK, Skinner C, Simensen RJ, Spence JE, Kesler S, Reiss AL, Schwartz CE (2007) Craniofacioskeletal syndrome: an X-linked dominant disorder with early lethality in males. Am J Med Genet 143A:2321–2329

    Article  PubMed  Google Scholar 

  75. Stocks P, Barrington A (1925) Hereditary disorders of bone development. Treasury of human inheritence 3, part 1

    Google Scholar 

  76. Stoffel M, Froguel P, Takeda J et al (1992) Human glucoki-nase gene: isolation, characterization and identification of two missense mutations linked to early-onset non-insulin dependent (type 2) diabetes melitus. Proc Natl Acad Sci USA 89:7698–7702

    Article  CAS  PubMed  Google Scholar 

  77. Timoféef-Ressovsky NW (1931) Gerichtetes Variieren in der phänotypischen Manifestierung einiger Generationen von Drosophila funebris. Naturwissenschaften 19:493–497

    Article  Google Scholar 

  78. Trevor-Roper PD (1952) Marriage of two complete albinos with normally pigmented offspring. Br J Ophthalmol 36:107

    Article  CAS  PubMed  Google Scholar 

  79. Von Dungern E, Hirszfeld L (1911) Über gruppenspezifische Strukturen des Blutes. III. Z Immunitatsforsch 8:526–562

    CAS  Google Scholar 

  80. Waardenburg PJ, Franceschetti A, Klein D (1961/1963) Genetics and ophthalmology. Blackwell, Oxford vols 1,2

    Google Scholar 

  81. Wahlund S (1928) Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Verer-bungslehre aus betrachtet. Hereditas 11:65–105

    Article  Google Scholar 

  82. Wallace DC (1989) Report of the committee on human mito-chondrial DNA. Cytogenet Cell Genet 51:612–621

    Article  CAS  PubMed  Google Scholar 

  83. Wallace DC (1989) Mitochondrial DNA mutations and neu-romuscular disease. Trends Genet 5:9–13

    Article  CAS  PubMed  Google Scholar 

  84. Wallace DC (1994) Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA 91:8739–8746

    Article  CAS  PubMed  Google Scholar 

  85. Weinberg W (1908) Über den Nachweis der Vererbung beim Menschen. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 64:368–382

    Google Scholar 

  86. Weinberg W (1912) Methoden und Fehlerquellen der Untersuchung auf Mendelsche Zahlen beim Menschen. Arch Rassenbiol 9:165–174

    Google Scholar 

  87. Welander L (1957) Homozygous appearance of distal myo-pathy. Acta Genet (Basel) 7:321–325

    CAS  Google Scholar 

  88. Wendt GG, Drohm D (1972) Die Huntingtonsche Chorea. Thieme, Stuttgart Fortschritte der Allgemeinen und Klinischen Humangenetik, vol 4

    Google Scholar 

  89. Wexler NS, Young AB, Tanzi RE et al (1987) Homozygotes for Huntington's disease. Nature 326:194–197

    Article  CAS  PubMed  Google Scholar 

  90. Wettke-Schöfer R, Kantner G (1983) X-linked dominant inherited diseases with lethality in hemizygous males. Hum Genet 64:1–23

    Article  Google Scholar 

  91. Wiener AS (1943) Additional variants of the Rh type demonstrable with a special human anti-Rh-serum. J Immunol 47:461–465

    Google Scholar 

  92. Wiener AS, di Diego N, Sokol S (1953) Studies on the heredity of the human blood groups. I. The MN types. Acta Genet Med Gemellol (Rome) 2:391–398

    CAS  Google Scholar 

  93. Winters RW, Graham JB, Williams TF, McFalls VC, Burnett CH (1957) A genetic study of familial hypophosphatemia and viatmin D-resistant rickets. Trans Assoc Am Physicians 70:234–242

    CAS  PubMed  Google Scholar 

  94. Zevani M, Serudei S, Gellera C et al (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339:309–311

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Motulsky, A.G. (2010). Formal Genetics of Humans: Modes of Inheritance*. In: Speicher, M.R., Motulsky, A.G., Antonarakis, S.E. (eds) Vogel and Motulsky's Human Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37654-5_6

Download citation

Publish with us

Policies and ethics