Skip to main content

Uncovering Novel Targets for Cancer Chemoprevention

  • Conference paper
Cancer Prevention

Abstract

Tobacco carcinogen treatment of immortalized human bronchial epithelial (HBE) cells has uncovered novel targets for cancer chemoprevention. Experiments were conducted with HBE cells and independent treatments with tobacco carcinogens along with the chemopreventive agent all-trans-retinoic acid (RA). That work highlighted D-type and E-type cyclins as novel molecular pharmacologic targets of several chemopreventive agents. G1 cyclins are often aberrantly expressed in bronchial preneoplasia and lung cancers. This implicated these species as targets for clinical cancer chemoprevention. Retinoid regulation mechanisms of D-type cyclins in lung cancer chemoprevention have been comprehensively explored. Retinoid chemoprevention has been mechanistically linked to proteasomal degradation of cyclin D1 and cyclin D3. Threonine 286 mutation stabilized cyclin D1, implicating phosphorylation in this retinoid chemoprevention. Studies with a phospho-specific anti-cyclin D1 antibody confirmed this hypothesis. Glycogen synthase kinase (GSK) inhibitors established a role for this kinase in the retinoid regulation of cyclin D1, but not cyclin D3. Involvement of D-type cyclins in this chemoprevention was shown using small interfering RNAs (siRNAs). Gene profiling experiments highlighted the E1-like ubiquitin-activating enzyme (UBE1L) in the retinoid regulation of cyclin D1. Proof of principle trials have translated these studies into the clinic and established that chemopreventive agents can target D-type cyclins. These findings have been built upon with a targeted combination regimen that cooperatively affects D-type cyclins. Taken together, these preclinical and clinical findings strongly implicate these cyclins as novel molecular pharmacological targets for cancer chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Betticher DC, Heighway J, Hasleton PS, Altermatt HJ, Ryder WD, Cerny T, Thatcher N (1996) Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small-cell lung cancer. Br J Cancer 73:294–300

    PubMed  CAS  Google Scholar 

  • Betticher DC, White GR, Vonlanthen S, Liu X, Kappeler A, Altermatt HJ, Thatcher N, Heighway J (1997) G1 control gene status is frequently altered in resectable non-small cell lung cancer. Int J Cancer 74:556–562

    Article  PubMed  CAS  Google Scholar 

  • Boyle JO, Langenfeld J, Lonardo F, Sekula D, Reczek P, Rusch V, Dawson MI, Dmitrovsky E (1999) Cyclin D1 proteolysis: a retinoid chemoprevention signal in normal, immortalized, and transformed human bronchial epithelial cells. J Natl Cancer Inst 91:373–379

    Article  PubMed  CAS  Google Scholar 

  • Dmitrovsky E, Sporn MB (2002) Pharmacology of cancer chemoprevention. In: Bertino JB (ed) Encyclopedia of cancer. Academic, San Diego, pp 449–456

    Google Scholar 

  • Dragnev KH, Petty WJ, Dmitrovsky E (2003a) Retinoid targets for cancer therapy and prevention. Cancer Biol Ther 2:S150–S156

    PubMed  CAS  Google Scholar 

  • Dragnev KH, Petty WJ, Dmitrovsky E (2003b) Targeted combination lung cancer therapy with a non-classical retinoid and an EGFR inhibitor. Proc AACR, 44:617

    Google Scholar 

  • Dragnev KH, Stover D, Dmitrovsky E (2003c) Lung cancer prevention: the guidelines. Chest 123:60S–71S

    Article  PubMed  Google Scholar 

  • Dragnev KH, Pitha-Rowe I, Ma Y, Petty WJ, Sekula D, Murphy B, Rendi M, Suh N, Desai NB, Sporn MB, Freemantle SJ, Dmitrovsky E (2004) Specific chemopreventive agents trigger proteasomal degradation of G1 cyclins: implications for combination therapy. Clin Cancer Res 10:2570–2577

    Article  PubMed  CAS  Google Scholar 

  • Dragnev KH, Petty WJ, Shah S, Biddle A, Desai NB, Memoli V, Rigas JR, Dmitrovsky E (2005) Bexarotene and erlotinib for aerodigestive tract cancer. J Clin Oncol 23:8757–8764

    Article  PubMed  CAS  Google Scholar 

  • Fan B, Negro-Vilar A, Lamph WW, Bissonnette RP (2004) A retinoid X receptor (RXR)-selective agonist bexarotene produces synergistic growth inhibitory activity with gefitinib in non-small cell lung cancer (NSCLC) cell lines. Proc ASCO 23:652

    Google Scholar 

  • Hayashi H, Ogawa N, Ishiwa N, Yazawa T, Inayama Y, Ito T, Kitamura H (2001) High cyclin E and low p27/Kip1 expressions are potentially poor prognostic factors in lung adenocarcinoma patients. Lung Cancer 34:59–65

    Article  PubMed  CAS  Google Scholar 

  • Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Kitareewan S, Pitha-Rowe I, Sekula D, Lowrey CH, Nemeth MJ, Golub TR, Freemantle SJ, Dmitrovsky E (2002) UBE1L is a retinoid target that triggers PML/RARα degradation and apoptosis in acute promyelocytic leukemia. Proc Natl Acad Sci U S A 99:3806–3811

    Article  PubMed  CAS  Google Scholar 

  • Kok K, Hofstra R, Pilz A, van den Berg A, Terpstra P, Buys CH, Carritt B (1993) A gene in the chromosomal region 3p21 with greatly reduced expression in lung cancer is similar to the gene for ubiquitin-activating enzyme. Proc Natl Acad Sci U S A 90:6071–6075

    Article  PubMed  CAS  Google Scholar 

  • Langenfeld J, Lonardo F, Kiyokawa H, Passalaris T, Ahn MJ, Rusch V, Dmitrovsky E (1996) Inhibited transformation of immortalized human bronchial epithelial cells by retinoic acid is linked to cyclin E down-regulation. Oncogene 13:1983–1990

    PubMed  CAS  Google Scholar 

  • Langenfeld J, Kiyokawa H, Sekula D, Boyle J, Dmitrovsky E (1997) Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism. Proc Natl Acad Sci U S A 94:12070–12074

    Article  PubMed  CAS  Google Scholar 

  • Loeb KR, Haas AL (1992) The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267:7806–7813

    PubMed  CAS  Google Scholar 

  • Lonardo F, Rusch V, Langenfeld J, Dmitrovsky E, Klimstra DS (1999) Overexpression of cyclins D1 and E is frequent in bronchial preneoplasia and precedes squamous cell carcinoma development. Cancer Res 59:2470–2476

    PubMed  CAS  Google Scholar 

  • Lonardo F, Dragnev KH, Freemantle SJ, Ma Y, Memoli N, Sekula D, Knauth EA, Beebe JS, Dmitrovsky E (2002) Evidence for the epidermal growth factor receptor as a target for lung cancer prevention. Clin Cancer Res 8:54–60

    PubMed  CAS  Google Scholar 

  • Ma Y, Feng Q, Sekula D, Diehl JA, Freemantle SJ, Dmitrovsky E (2005) Retinoid targeting of different D-type cyclins through distinct chemopreventive mechanisms. Cancer Res 65:6476–6483

    Article  PubMed  CAS  Google Scholar 

  • Mate JL, Ariza A, Aracil C, Lopez D, Isamat M, Perez-Piteira J, Navas-Palacios JJ (1996) Cyclin D1 overexpression in non-small cell lung carcinoma: correlation with Ki67 labeling index and poor cytoplasmic differentiation. J Pathol 180:395–399

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn J (2001) The epidermal growth factor receptor as a target for cancer therapy. Endocr Relat Cancer 8:3–9

    Article  PubMed  CAS  Google Scholar 

  • Moon RC, Mehta RG, Rao KVN (1994) Retinoids and cancer in experimental animals. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven Press, New York, pp 573–595

    Google Scholar 

  • Narasimhan J, Potter JL, Haas AL (1996) Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J Biol Chem 271:324–330

    Article  PubMed  CAS  Google Scholar 

  • Papadimitrakopoulou VA, Izzo J, Mao L, Keck J, Hamilton D, Shin DM, El-Naggar A, den Hollander P, Liu D, Hittelman WN, Hong WK (2001) Cyclin D1 and p16 alterations in advanced premalignant lesions of the upper aerodigestive tract: role in response to chemoprevention and cancer development. Clin Cancer Res 7:3127–3134

    PubMed  CAS  Google Scholar 

  • Petty WJ, Dragnev KH, Memoli VA, Ma Y, Desai NB, Biddle A, Davis TH, Nugent WC, Memoli N, Hamilton M, Iwata KK, Rigas JR, Dmitrovsky E (2004) Epidermal growth factor receptor tyrosine kinase inhibition represses cyclin D1 in aerodigestive tract cancers. Clin Cancer Res 10:7547–7554

    Article  PubMed  CAS  Google Scholar 

  • Petty WJ, Li N, Biddle A, Bounds R, Nitkin C, Ma Y, Dragnev KH, Freemantle SJ, Dmitrovsky E (2005) A novel retinoic acid receptor ? isoform and retinoid resistance in lung carcinogenesis. J Natl Cancer Inst 97:1645–1651

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM (2001a) Mechanisms underlying ubiquitination. Ann Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM (2001b) Ubiquitin enters the new millennium. Mol Cell 8:499–504

    Article  PubMed  CAS  Google Scholar 

  • Pitha-Rowe I, Hassel BA, Dmitrovsky E (2004a) Involvement of UBE1L in ISG15 conjugation during retinoid-induced differentiation of acute promyelocytic leukemia. J Biol Chem 279:18178–18187

    Article  PubMed  CAS  Google Scholar 

  • Pitha-Rowe I, Petty WJ, Feng Q, Koza-Taylor PH, Dimattia DA, Pinder L, Dragnev KH, Memoli N, Memoli V, Turi T, Beebe J, Kitareewan S, Dmitrovsky E (2004b) Microarray analyses uncover UBE1L as a candidate target gene for lung cancer chemoprevention. Cancer Res 64:8109–8115

    Article  PubMed  CAS  Google Scholar 

  • Ratschiller D, Heighway J, Gugger M, Kappeler A, Pirnia F, Schmid RA, Borner MM, Betticher DC (2003) Cyclin D1 overexpression in bronchial epithelia of patients with lung cancer is associated with smoking and predicts survival. J Clin Oncol 21:2085–2093

    Article  PubMed  CAS  Google Scholar 

  • Rigas JR, Dragnev KH, Petty WJ, Nugent WC, Memoli VA, Black CC, Lewis LD, Loewen G, Negro-Vilar A, Dmitrovsky E (2005) A proof-of-principle trial of bexarotene in patients (pts) with resectable non-small cell lung cancer (NSCLC). Proc Am Soc Clin Onc 23:654s

    Google Scholar 

  • Rusch V, Klimstra D, Linkov I, Dmitrovsky E (1995) Aberrant expression of p53 or the epidermal growth factor receptor is frequent in early bronchial neoplasia and coexpression precedes squamous cell carcinoma development. Cancer Res 55:1365–1372

    PubMed  CAS  Google Scholar 

  • Rusch V, Mendelsohn J, Dmitrovsky E (1996) The epidermal growth factor receptor and its ligands as therapeutic targets in human tumors. Cytokine Growth Factor Rev 7:133–141

    Article  PubMed  CAS  Google Scholar 

  • Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232

    PubMed  CAS  Google Scholar 

  • Schauer IE, Siriwardana S, Langan TA, Sclafani RA (1994) Cyclin D1 overexpression vs. retinoblastoma inactivation: implications for growth control evasion in non-small cell and small cell lung cancer. Proc Natl Acad Sci U S A 91:7827–7831

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Dunlop NM, Newton DL, Smith JM (1976) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35:1332–1338

    PubMed  CAS  Google Scholar 

  • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A 96:2907–2912

    Article  PubMed  CAS  Google Scholar 

  • Vonlanthen S, Heighway J, Kappeler A, Altermatt HJ, Borner MM, Betticher DC (2000) p21 is associated with cyclin D1, p16INK4a and pRb expression in resectable non-small cell lung cancer. Int J Oncol 16:951–957

    PubMed  CAS  Google Scholar 

  • Weston A, Harris CC (1997) Chemical carcinogenesis. In: Holland JF, Frei E, Bast RC, Kufe DW, Morton DL, Weichselbaum RR (eds) Cancer medicine, 4th edn., Vol. 1, Williams and Wilkins, Baltimore, pp 261–276

    Google Scholar 

  • Witschi H, Espiritu I, Suffia M, Pinkerton KE (2002) Expression of cyclin D1/2 in the lungs of strain A/J mice fed chemopreventive agents. Carcinogenesis 23:289–294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragnev, K.H. et al. (2007). Uncovering Novel Targets for Cancer Chemoprevention. In: Senn, HJ., Kapp, U. (eds) Cancer Prevention. Recent Results in Cancer Research, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37696-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37696-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37695-8

  • Online ISBN: 978-3-540-37696-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics