Skip to main content

Real-Space Renormalization and Energy-Level Statistics at the Quantum Hall Transition

  • Chapter
  • First Online:
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 43))

Abstract

We review recent applications of the real-space renormalization group (RG) approach to the integer quantum Hall (QH) transition. The RG approach, applied to the Chalker-Coddington network model, reproduces the critical distribution of the power transmission coefficients, i.e., two-terminal conductances, Pc(G), with very high accuracy. The RG flow of P(G) at energies away from the transition yields a value of the critical exponent, νG=2.39±0.01, that agrees with most accurate large-size lattice simulations. Analyzing the evolution of the distribution of phases of the transmission coefficients upon a step of the RG transformation, we obtain information about the energy-level statistics (ELS). From the fixed point of the RG transformation we extract a critical ELS. Away from the transition the ELS crosses over towards a Poisson distribution. Studying the scaling behavior of the ELS around the QH transition, we extract the critical exponent νELS=2.37±0.02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Römer, R.A., Cain, P. Real-Space Renormalization and Energy-Level Statistics at the Quantum Hall Transition. In: Kramer, B. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44838-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44838-9_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40150-6

  • Online ISBN: 978-3-540-44838-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics