Skip to main content

Shape Complexes for Metamorhpic Robots

  • Chapter
Algorithmic Foundations of Robotics V

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

A metamorphic robotic system is an aggregate of identical robot units which can individually detach and reattach in such a way as to change the global shape of the system. We introduce a mathematical framework for defining and analyzing general metamorphic systems. This formal structure combined with ideas from geometric group theory leads to a natural extension of a configuration space for metamorphic systems — the shape complex — which is especially adapted to parallelization. We present an algorithm for optimizing reconfiguration sequences with respect to elapsed time. A universal geometric property of shape complexes — non-positive curvature — is the key to proving convergence to the globally time-optimal solution.

Supported in part by National Science Foundation Grant DMS-0134408.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abrams, Configuration spaces and braid groups of graphs. Ph.D. thesis, UC Berekeley, 2000.

    Google Scholar 

  2. A. Abrams and R. Ghrist, State complexes for reconfigurable systems, in preparation.

    Google Scholar 

  3. M. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin, 1999.

    Book  Google Scholar 

  4. Z. Butler, S. Byrnes, and D. Rus, Distributed motion planning for modular robots with unit-compressible modules, in Proc. IROS 2001.

    Google Scholar 

  5. Z. Butler, K. Kotay, D. Rus, and K. Tomita, Cellular automata for decentralized control of self-reconfigurable robots, in Proc. IEEE ICRA Workshop on Modular Robots, 2001.

    Google Scholar 

  6. G. Chirikjian, Kinematics of a metamorphic robotic system, in Proc. IEEE ICRA, 1994.

    Google Scholar 

  7. G. Chirikjian and A. Pamecha, Bounds for self-reconfiguration of metamorphic robots, in Proc. IEEE ICRA, 1996.

    Google Scholar 

  8. D. Epstein et al., Word Processing in Groups. Jones & Bartlett Publishers, Boston MA, 1992.

    MATH  Google Scholar 

  9. R. Ghrist, Configuration spaces and braid groups on graphs in robotics, AMS/IP Studies in Mathematics volume 24, 29–40, 2001. ArXiv preprint math.GT/9905023.

    MathSciNet  Google Scholar 

  10. M. Gromov, Hyperbolic groups, in Essays in Group Theory, MSRI Publ. 8, Springer-Verlag, 1987.

    Google Scholar 

  11. K. Kotay and D. Rus, The self-reconfiguring robotic molecule: design and control algorithms, in Proc. WAFR, 1998.

    Google Scholar 

  12. C. McGray and D. Rus, Self-reconfigurable molecule robots as 3-d metamorphic robots, in Proc. Intl. Conf. Intelligent Robots & Design, 2000.

    Google Scholar 

  13. S. Murata, H. Kurokawa, and S. Kokaji, Self-assembling machine, in Proc. IEEE ICRA, 1994.

    Google Scholar 

  14. S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji, A 3-d self-reconfigurable structure, in Proc. IEEE ICRA, 1998.

    Google Scholar 

  15. A. Nguyen, L. Guibas, and M. Yim, Controlled module density helps reconfiguration planning, in Proc. WAFR, 2000.

    Google Scholar 

  16. G. Niblo and L. Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology, 37 (3), 621–633, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian, Useful metric for modular robot motion planning, in IEEE Trans. Robotics & Automation, 13(4), 531–545, 1997.

    Google Scholar 

  18. J. Walter, J. Welch, and N. Amato, Distributed reconfiguration of metamorphic robot chains, in Proc. ACM Symp. on Distributed Computing, 2000.

    Google Scholar 

  19. M. Yim, A reconfigurable robot with many modes of locomotion, in Proc. Intl. Conf. Adv. Mechatronics, 1993.

    Google Scholar 

  20. M. Yim, J. Lamping, E. Mao, and J. Chase, Rhombic dodecahedron shape for self-assembling robots, Xerox PARC Tech. Rept. P9710777, 1997.

    Google Scholar 

  21. Y. Zhang, M. Yim, J. Lamping, and E. Mao, Distributed control for 3-d shape metamorphosis, Aut. Robots. J., 41–56, 2001.

    Google Scholar 

  22. E. Yoshida, S. Murata, K. Tomita, H. Kurokawa, and S. Kokaji, Distributed formation control of a modular mechanical system, in Proc. Intl. Conf. Intelligent Robots & Sys., 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghrist, R. (2004). Shape Complexes for Metamorhpic Robots. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics