Skip to main content

Chapter 4: Spatio-temporal Models and Languages: An Approach Based on Data Types

  • Chapter
Spatio-Temporal Databases

Abstract

In this chapter we develop DBMS data models and query languages to deal with geometries changing over time. In contrast to most of the earlier work on this subject, these models and languages are capable of handling continuously changing geometries, or moving objects. We focus on two basic abstractions called moving point and moving region. A moving point can represent an entity for which only the position in space is relevant. A moving region captures moving as well as growing or shrinking regions. Examples for moving points are people, polar bears, cars, trains, or air planes; examples for moving regions are hurricanes, forest fires, or oil spills in the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, J.K.: Fundamental Operations in Computer-Assisted Map Analysis. Int. Journal of Geographic Information Systems 1(2), 119–136 (1987)

    Article  Google Scholar 

  2. Böhlen, M.H., Jensen, C.S.: Seamless Integration of Time into SQL. Technical Report R-96-49, Department of Computer Science, Aalborg University

    Google Scholar 

  3. Böhlen, M.H., Jensen, C.S., Skjellaug, B.: Spatio-Temporal Database Support for Legacy Applications. In: Proceedings of the 1998 ACM Symposium on Applied Computing, Atlanta, Georgia, pp. 226–234 (February 1998)

    Google Scholar 

  4. Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Evaluating the Completeness of TSQL2. In: Recent Advances in Temporal Databases, International Workshop on Temporal Databases, pp. 153–172. Springer, Berlin (1995)

    Google Scholar 

  5. Chan, E.P.F., Zhu, R.: QL/G - A Query Language for Geometric Data Bases. In: Proc. 1st International Conference on GIS, Urban Regional and Environmental Planning, pp. 271–286. Samos, Greece (1996)

    Google Scholar 

  6. Couclelis, H.: People Manipulate Objects (but Cultivate Fields): Beyond the Raster- Vector Debate in GIS. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 65–77. Springer, Heidelberg (1992)

    Google Scholar 

  7. Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. GeoInformatica 3(3), 265–291 (1999)

    Article  Google Scholar 

  8. Erwig, M., Meyer, B.: Heterogeneous Visual Languages – Integrating Visual and Textual Programming. In: 11th IEEE Symp. on Visual Languages, pp. 318–325 (1995)

    Google Scholar 

  9. Erwig, M., Schneider, M.: Partition and Conquer. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 389–408. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Erwig, M., Schneider, M.: Developments in Spatio-Temporal Query Languages. In: IEEE Int. Workshop on Spatio-Temporal Data Models and Languages, pp. 441–449 (1999)

    Google Scholar 

  11. Erwig, M., Schneider, M.: Spatio-Temporal Predicates. Technical Report 262, FernUniversität Hagen (1999)

    Google Scholar 

  12. Erwig, M., Schneider, M.: The Honeycomb Model of Spatio-Temporal Partitions. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 39–59. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Erwig, M., Schneider, M.: Visual Specifications of Spatio-Temporal Developments. In: 15th IEEE Symp. on Visual Languages, pp. 187–188 (1999)

    Google Scholar 

  14. Erwig, M., Schneider, M.: Query-By-Trace: Visual Predicate Specification in Spatio-Temporal Databases. In: 5th IFIP Conf. on Visual Databases (2000) (to appear)

    Google Scholar 

  15. Erwig, M., Schneider, M., Güting, R.H.: Temporal Objects for Spatio-Temporal Data Models and a Comparison of Their Representations. In: Kambayashi, Y., Lee, D.-L., Lim, E.-p., Mohania, M., Masunaga, Y. (eds.) ER Workshops 1998. LNCS, vol. 1552, pp. 454–465. Springer, Heidelberg (1999)

    Google Scholar 

  16. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A Data Model and Data Structures for Moving Objects Databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Dallas, Texas (2000)

    Google Scholar 

  17. Gaal, S.: Point Set Topology. Academic Press, London (1964)

    MATH  Google Scholar 

  18. Güting, R.H.: Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and Optimization. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Washington, pp. 277–286 (1993)

    Google Scholar 

  19. Güting, R.H.: An Introduction to Spatial Database Systems. VLDB Journal 3, 357–399 (1994)

    Article  Google Scholar 

  20. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A Foundation for Representing and Querying Moving Objects. Technical Report Informatik 238, FernUniversität Hagen (1998), Available at http://www.fernuni-hagen.de/inf/pi4/papers/Foundation.ps.gz

  21. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A Foundation for Representing and Querying Moving Objects. ACM Transactions on Database Systems 25(1) (2000)

    Google Scholar 

  22. Güting, R.H., Schneider, M.: Realm-Based Spatial Data Types: The ROSE Algebra. VLDB Journal 4(2), 100–143 (1995)

    Article  Google Scholar 

  23. Huang, Z., Svensson, P., Hauska, H.: Solving Spatial Analysis Problems with GeoSAL, a Spatial Query Language. In: 6th Int. Working Conf. on Scientific and Statistical Database Management (1992)

    Google Scholar 

  24. Loeckx, J., Ehrich, H.D., Wolf, M.: Specification of Abstract Data Types. John Wiley & Sons, Inc. and B.G. Teubner Publishers (1996)

    Google Scholar 

  25. Lorentzos, N.A., Mitsopoulos, Y.G.: SQL Extension for Interval Data. IEEE Transactions on Knowledge and Data Engineering 9(3), 480–499 (1997)

    Article  Google Scholar 

  26. Lorentzos, N.A., Tryfona, N., Rios Viqueira, J.R.: Relational Algebra for Spatial Data Management. In: Proc. International Workshop Integrated Spatial Databases: Digital Images and GIS, Portland, Maine (June 1999)

    Google Scholar 

  27. Lorentzos, N.A., Rios Viqueira, J.R., Tryfona, N.: Quantum-Based Spatial Data Model. Technical Report, Informatics Laboratory, Agricultural University of Athens (2000)

    Google Scholar 

  28. Misund, G., Johansen, B., Hasle, G., Haukland, J.: Integration of geographical information technology and constraint reasoning — A promising approach to forest management. Technical Report STF33A 95009, SINTEF Applied Mathematics, Oslo, Norway (June 1995)

    Google Scholar 

  29. Scholl, M., Voisard, A.: Thematic Map Modeling. In: Buchmann, A., Smith, T.R., Wang, Y.-F., Günther, O. (eds.) SSD 1989. LNCS, vol. 409, pp. 167–190. Springer, Heidelberg (1990)

    Google Scholar 

  30. Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Adding Transaction Time to SQL/Temporal. ANSI X3H2-96-152r, ISO–ANSI SQL/Temporal Change Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-143 (May 1996)

    Google Scholar 

  31. Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Adding Valid Time to SQL/Temporal. ANSI X3H2-96-151r1, ISO–ANSI SQL/Temporal Change Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-142 (May 1996)

    Google Scholar 

  32. Tilove, R.B.: Set Membership Classification: A Unified Approach to Geometric Intersection Problems. IEEE Transactions on Computers C-29, 874–883 (1980)

    Article  MathSciNet  Google Scholar 

  33. Tomlin, C.D.: Geographic Information Systems and Cartographic Modeling. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  34. van Roessel, J.W.: Conceptual Folding and Unfolding of Spatial Data for Spatial Queries. In: Robinson, V.B., Tom, H. (eds.) Towards SQL Database Extensions for Geographic Information Systems, Gaithersburg, Maryland. National Institute of Standards and Technology, pp. 133–148 (1993) Report NISTIR 5258

    Google Scholar 

  35. van Roessel, J.W.: An Integrated Point-Attribute Model for Four Types of Areal Gis Features. In: Healey, R.G., Waugh, T.C. (eds.) Proc. 6th International Symposium on Spatial Data Handling (SDH 1994), Edinburgh, Scotland, UK, pp. 127–144 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Güting, R.H. et al. (2003). Chapter 4: Spatio-temporal Models and Languages: An Approach Based on Data Types. In: Sellis, T.K., et al. Spatio-Temporal Databases. Lecture Notes in Computer Science, vol 2520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45081-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45081-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40552-8

  • Online ISBN: 978-3-540-45081-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics