Skip to main content

Flow Formulations for the Student Scheduling Problem

  • Conference paper
Practice and Theory of Automated Timetabling IV (PATAT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2740))

Abstract

We discuss the student scheduling problem as it generally applies to high schools in North America. We show that the problem is NP-hard. We discuss various multi-commodity flow formulations, with fractional capacities and integral gains, and we show how a number of practical objectives can be accommodated by the models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsekas, D.P., Polymenakos, L.C., Tseng, P.: An ε-relaxation Method for Separable Convex Cost Network Flow Problems. SIAM J. Optim. 7, 853–870 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brunetta, L., Conforti, M., Fischetti, M.: A Polyhedral Approach to an Integer Multicommodity Flow Problem. Discr. Appl. Math. 101, 13–36 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carter, M.W., Laporte, G.: Recent Developments in Practical Course Timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Davis, L., Ritter, L.: Schedule Optimization with Probabilistic Search. In: Proc. 3rd IEEE Conf. on Artif. Intell. Appl., pp. 231–236. IEEE, Los Alamitos (1987)

    Google Scholar 

  5. De Leone, R., Meyer, R.R., Zakarian, A.: A Partitioned ε-relaxation Algorithm for Separable Convex Network Flow Problems. Comput. Optim. Appl. 12, 107–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Werra, D.: Construction of School Timetables by Flow Methods. INFOR – Can. J. Oper. Res. and Inf. Process. 9, 12–22 (1971)

    Google Scholar 

  7. Even, S., Itai, A., Shamir, A.: On the Complexity of Timetable and Multicommodity Flow Problems. In: Proc. 16th Annu. Symp. Found. Comput. Sci., Berkeley, CA, pp. 184–193. IEEE Computer Society, Long Beach (1975)

    Google Scholar 

  8. Even, S., Itai, A., Shamir, A.: On the Complexity of Timetable and Multicommodity Flow Problems. SIAM J. Comput. 5, 691–703 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  10. Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grinold, R.C.: Calculating Maximal Flows in a Network with Positive Gains. Oper. Res. 21, 528–541 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jensen, P.A., Bhaumik, G.: A Flow Augmentation Approach to the Network with Gains Minimum Cost Flow Problem. Manage. Sci. 23, 631–643 (1976/1977)

    Google Scholar 

  13. Jewell, W.S.: Optimal Flow through Networks with Gains. Oper. Res. 10, 476–499 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klincewicz, J.G.: A Newton Method for Convex Separable Network Flow Problems. Networks 13, 427–442 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Laporte, G., Desroches, S.: The Problem of Assigning Students to Course Sections in a Large Engineering School. Comput. Oper. Res. 13, 387–394 (1986)

    Article  Google Scholar 

  16. Malek-Zavarei, M., Aggarwal, J.K.: Optimal Flow in Networks with Gains and Costs. Networks 1, 355–365 (1971/1972)

    Google Scholar 

  17. Marín Gracia, Á.: Optimization of Nonlinear, Convex and Separable, Networks. In: Proc. 1st Int. Seminar Oper. Res. Basque Provinces, Zarauz, pp. 173–203. Univ. Pais Vasco, Bilbao (1986)

    Google Scholar 

  18. Maurras, J.F.: Optimization of the Flow through Networks with Gains. Math. Program. 3, 135–144 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Miyaji, I., Ohno, K., Mine, H.: Solution Method for Partitioning Students into Groups. Eur. J. Oper. Res. 33, 82–90 (1981)

    Article  Google Scholar 

  20. Sabin, G.C.W., Winter, G.K.: The Impact of Automated Timetabling on Universities – a Case Study. J. Oper. Res. Soc. 37, 689–693 (1986)

    Google Scholar 

  21. Sun, J., Kuo, H.: Applying a Newton Method to Strictly Convex Separable Network Quadratic Programs. SIAM J. Optim. 8, 728–745 (1998) (electronic)

    Google Scholar 

  22. Tseng, P., Bertsekas, D.P.: An ε-relaxation Method for Separable Convex Cost Generalized Network Flow Problems. Math. Program. Ser. A 88, 85–104 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, E., Kruk, S., Lipman, M. (2003). Flow Formulations for the Student Scheduling Problem. In: Burke, E., De Causmaecker, P. (eds) Practice and Theory of Automated Timetabling IV. PATAT 2002. Lecture Notes in Computer Science, vol 2740. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45157-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45157-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40699-0

  • Online ISBN: 978-3-540-45157-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics