Skip to main content

Selfreparing Neural Networks: A Model for Recovery from Brain Damage

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2003)

Abstract

We introduce selfrepairing neural networks as a model for recovery from brain damage. Small lesions are repaired through reinstatement of the redundancy in the network’s connections. With mild lesions, this process can model autonomous recovery. Moderate lesions require patterned input. In this paper, we discuss implementations in three types of network of increasing biological plausibility. We also mention some results from random graph theory. Finally, we discuss the implications for rehabilitation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robertson, I.H., Murre, J.M.J.: Rehabilitation of brain damage: brain plasticity and principles of guided recovery. Psychological Bulletin 125, 544–575 (1999)

    Article  Google Scholar 

  2. Luria, A.R.: Restoration of function after brain injury. Pergamon, Oxford (1963)

    Google Scholar 

  3. Luria, A.R., Naydin, V.L., Tsvetkova, L.S., Vinarskaya, E.N.: Restoration of higher cortical functions following local brain damage. In: Vinken, P.J., Bruyn, G.W. (eds.) Handbook of clinical neurology, vol. 3, pp. 368–433. Elsevier, New York (1975)

    Google Scholar 

  4. Ayala, F.J., Kigger, J.A.: Modern genetics. Benjamin/Cummings, Menlo Park (1982)

    Google Scholar 

  5. White, O.J., Eisen, A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C., Richardson, D.L., Moffat, K.S., Qin, H., Jiang, L., Pamphile, W., Crosby, M., Shen, M., Vamathevan, P., Lam, L., McDonald, T., Utterback, C., Zalewski, K.S., Makarova, J.J., Aravind, L.: Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577 (1999)

    Article  Google Scholar 

  6. Cotman, C.W., Nieto-Sampedro, M.: Brain Function, synapse renewal, and plasticity. Annual Review Psychology 33, 371–401 (1982)

    Article  Google Scholar 

  7. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. In: Proceedings of the National Academy of Sciences USA, vol. 79, pp. 2554–2558 (1982)

    Google Scholar 

  8. Murre, J.M.J.: TraceLink: a model of amnesia and consolidation of memory. Hippocampus 6, 675–684 (1996)

    Article  Google Scholar 

  9. Erdös, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MATH  MathSciNet  Google Scholar 

  10. Bollobás, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  11. MacGregor, R.J., Oliver, R.M.: A model for repetetive firing in neurons. Cybernetik 16, 53–64 (1974)

    Article  Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitative description of ion currents and its application to conduction and excitation in nerve membranes. In: Journal Physiology, London, vol. 117 (1952)

    Google Scholar 

  13. Singer, W.: Ontogenetic self-organization and learning. In: McGaugh, J.L., Weinberger, N.M., Lynch, G. (eds.) Brain organization and memory: cells, systems, and circuits, pp. 211–233. Oxford University Press, Oxford (1990)

    Google Scholar 

  14. Hopfield, J.J., Feinstein, D.I., Palmer, R.G.: Unlearning’ has a stabilizing effect in collective memories. Nature 304, 158–159 (1983)

    Article  Google Scholar 

  15. Crick, F., Mitchison, G.: The function of dream sleep. Nature 304, 111–114 (1983)

    Article  Google Scholar 

  16. McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review 102, 419–457 (1995)

    Article  Google Scholar 

  17. Nadel, et al.: (2001)

    Google Scholar 

  18. Alvarez, R., Squire, R.L.: Memory consolidation and the medial temporal lobe: a simple network model. In: Proceedings of National Academy of Sciences, USA, vol. 91, pp. 7041–7045 (1994)

    Google Scholar 

  19. Wilson, M.A., McNaughton, B.L.: Reactivation of hippocampal ensemble memories during sleep. Science 255, 676–679 (1994)

    Article  Google Scholar 

  20. Finger, S., Stein, D.G.: Brain damage and recovery: Research and clinical perspectives. Academic Press, New York (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murre, J.M.J., Griffioen, R., Robertson, I.H. (2003). Selfreparing Neural Networks: A Model for Recovery from Brain Damage. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2774. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45226-3_158

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45226-3_158

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40804-8

  • Online ISBN: 978-3-540-45226-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics