Skip to main content

Fault Tolerance Analysis of Distributed Reconfigurable Systems Using SAT-Based Techniques

  • Conference paper
  • First Online:
Field Programmable Logic and Application (FPL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2778))

Included in the following conference series:

Abstract

The ability to migrate tasks from one reconfigurable node to another improves the fault tolerance of distributed reconfigurable systems. The degree of fault tolerance is inherent to the system and can be optimized during system design. Therefore, an efficient way of calculating the degree of fault tolerance is needed. This paper presents an approach based on satisfiability testing (SAT) which regards the question: How many resources may fail in a distributed reconfigurable system without losing any functionality? We will show by experiment that our new approach can easily be applied to systems of reasonable size as we will find in the future in the field of body area networks and ambient intelligence.

Supported in part by the German Science Foundation (DFG), SFB 376 (Massive Parallelität) and SPP 1148 (Rekonfigurierbare Rechensysteme).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dick, R., Jha, N.: CORDS: Hardware-Software Co-Synthesis of Reconfigurable Real-Time Distributed Embedded Systems. In: Proceedigns of ICCAD 1998, pp. 62–68 (1998)

    Google Scholar 

  2. Ouaiss, I., Govindarajan, S., Srinivasan, V., Kaul, M., Vemuri, R.: An Integrated Partitioning and Synthesis System for Dynamically Reconfigurable Multi-FPGA Architectures. In: IPPS/SPDP Workshops, pp. 31–36 (1998)

    Google Scholar 

  3. Walder, H., Platzner, M.: Online Scheduling for Block-partitioned Reconfigurable Devices. In: Proceedings of Design, Automation and Test in Europe (DATE 2003), pp. 290–295 (2003)

    Google Scholar 

  4. Rintanen, J.: Constructing Conditional Plans by a Theorem-Prover. Journal of Artificial Intelligence 10, 323–352 (1999)

    Article  MathSciNet  Google Scholar 

  5. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence, pp. 417–422 (2000)

    Google Scholar 

  6. Scholl, C., Becker, B.: Checking Equivalence for Partial Implementations. In: Proceedings of 38th Design Automation Conference, Las Vegas, USA, pp. 238–243 (2001)

    Google Scholar 

  7. Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean Formulas. Information and Computation 117, 12–18 (1995)

    Article  MathSciNet  Google Scholar 

  8. Cadoli, M., Giovanardi, A., Schaerf, M.: An Algorithm to Evaluate Quantified Boolean Formulae. In: Proc. of the 15th Nat. Conf. on Artificial Intelligence, pp. 262–267 (1998)

    Google Scholar 

  9. Feldmann, R., Monien, B., Schamberger, S.: A Distributed Algorithm to Evaluate Quantified Boolean Formulas. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence, pp. 285–290 (2000)

    Google Scholar 

  10. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean Formulas. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence, pp. 275–281 (2001)

    Google Scholar 

  11. Cadence: Virtual Component Co-design (VCC) (2001), http://www.cadence.com

  12. Blickle, T., Teich, J., Thiele, L.: System-Level Synthesis Using Evolutionary Algorithms. In: Gupta, R. (ed.) Design Automation for Embedded Systems, vol. 3, pp. 23–62. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  13. Baumgarte, V., May, F., Nückel, A., Vorbach, M., Weinhardt, M.: PACT XPP - A Self- Reconfigurable Data Processing Architecture. In: ERSA, Las Vegas, Nevada (2001)

    Google Scholar 

  14. Chameleon Systems: CS 2000 Reconfigurable Communications Processor (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feldmann, R., Haubelt, C., Monien, B., Teich, J. (2003). Fault Tolerance Analysis of Distributed Reconfigurable Systems Using SAT-Based Techniques. In: Y. K. Cheung, P., Constantinides, G.A. (eds) Field Programmable Logic and Application. FPL 2003. Lecture Notes in Computer Science, vol 2778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45234-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45234-8_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40822-2

  • Online ISBN: 978-3-540-45234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics