Skip to main content

Volume Holographic Multiplexing Methods

  • Chapter
Holographic Data Storage

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

Abstract

Data storage is the conversion of abstract information, representing the data, into physical changes in an appropriate medium. Data retrieval is the inference of the stored information from the storage-induced changes. The physical processes applied to different storage technologies differ widely, and, to a large extent, define their performance limits and applications. In this chapter we focus on the construction of holographic memories utilizing the effect of volume diffraction. Material physics related to holographic storage is the topic of later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Gabor, “A new microscopic principle,” Nature, 161:777, 1948.

    Article  ADS  Google Scholar 

  2. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc., A 197:454, 1949.

    Article  ADS  MATH  Google Scholar 

  3. D. Gabor, “Microscopy by reconstructed wavefronts II,” Proc. Phys. Soc., B 64:449, 1949.

    Article  ADS  Google Scholar 

  4. E. Leith and J. Upatnieks, “Wavefront reconstruction and communication theory,” J. Opt. Soc. Am., 52:1123, 1962.

    Article  ADS  Google Scholar 

  5. P.J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt., 2(4):393–400, 1963.

    Article  ADS  Google Scholar 

  6. E.N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt., 5(8):1303–1311, 1966.

    Article  ADS  Google Scholar 

  7. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J., 48(9):2909–2947, 1969.

    Google Scholar 

  8. D.L. Staebler, J.J. Amodei, and W. Philips, “Multiple storage of thick holograms in LiNbO3,” in VII International Quantum Electronics Conference, Montreal, 1972.

    Google Scholar 

  9. H. Lee, X.-G. Gu, and D. Psaltis, “Volume holographic interconnections with maximal capacity and minimal cross talk,” J. Appl. Phys., 65(6):2191–2194, 1989.

    ADS  Google Scholar 

  10. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett., 19(13):993–994, 1994.

    Article  ADS  Google Scholar 

  11. G. A. Rakuljic, V. Levya, and A. Yariv, “Optical data storage by using orthogonal wavelength—multiplexed volume holograms,” Opt. Lett., 17(20):1471–1473, 1992.

    Article  ADS  Google Scholar 

  12. S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun., 101(5–6):317–321, 1993.

    Article  ADS  Google Scholar 

  13. H.C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun., 64(5):407–411, 1987.

    Article  ADS  Google Scholar 

  14. H.C. Külich, “Reconstructing volume holograms without image field losses,” Appl. Opt., 30(20):2850–2857, 1991.

    Article  ADS  Google Scholar 

  15. D. Psaltis, F. Mok, and H.Y.-S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett., 19(3):210–212, 1994.

    Article  ADS  Google Scholar 

  16. G. Barbastathis and D. Psaltis, “Shift-multiplexed holographic memory using the two-lambda method,” Opt. Lett., 21(6):429–431, 1996.

    Article  ADS  Google Scholar 

  17. C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A, 9(11):1978 1983, 1992.

    ADS  Google Scholar 

  18. K. Curtis, C. Gu, and D. Psaltis, “Cross-talk in wavelength-multiplexed holographic memories,” Opt. Lett., 18(12):1001–1003, 1993.

    Article  ADS  Google Scholar 

  19. A. Yariv, “Interpage and interpixel crosstalk in orthogonal (wavelength multiplexed) holograms,” Opt. Lett., 18(8):652–654, 1993.

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Curtis and D. Psaltis, “Cross talk in phase-coded holographic memories,” J. Opt. Soc. Am. A, 10(12):2547–2550, 1993.

    Article  ADS  Google Scholar 

  21. M.C. Bashaw, J.F. Heanue, A. Aharoni, J.F. Walkup, and L. Hesselink, “Crosstalk considerations for angular and phase-encoded multiplexing in volume holography,” J. Opt. Soc. Am. B, 11(9):1820–1836, 1994.

    Article  ADS  Google Scholar 

  22. K. Curtis and D. Psaltis, “Cross—talk for angle-multiplexed and wavelengthmultiplexed image plane holograms,” Opt. Lett., 19(21):1774--1776, 1994.

    Article  ADS  Google Scholar 

  23. H.-Y.S. Li and D. Psaltis, “Three dimensional holographic disks,” Appl. Opt., 33(17):3764–3774, 1994.

    Article  ADS  Google Scholar 

  24. W. Liu and D. Psaltis, “Pixel size limit in holographic memories,” Opt. Lett., 24(19):1340–1342, 1999.

    Article  ADS  Google Scholar 

  25. F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett., 21(12):896–898, 1996.

    Article  ADS  Google Scholar 

  26. D. Brady and D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A, 9 (7) :1167–1182, 1992.

    Article  ADS  Google Scholar 

  27. F.H. Mok, G.W. Burr, and D. Psaltis, “Angle and space multiplexed random access memory (HRAM),” Optical Memory and Neural Networks, 3(2):119–127, 1994.

    Google Scholar 

  28. G.W. Burr, F.H. Mok, and D. Psaltis, “Angle and space multiplexed storage using the 90° geometry,” Opt. Commun., 117(1–2):49–55, 1995.

    Article  ADS  Google Scholar 

  29. C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun., 85:171–176, 1991.

    Article  ADS  Google Scholar 

  30. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt., 35:2403–2417, 1996.

    Article  ADS  Google Scholar 

  31. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett., 20(7):782–784, 1995.

    Article  ADS  Google Scholar 

  32. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple highcapacity digital data pages in thick photopolymer systems,” Opt. Lett., 23(21):1710–1722, 1998.

    Article  ADS  Google Scholar 

  33. G. Barbastathis, A. Pu, M. Levene, and D. Psaltis, “Shift-multiplexed holographic 3d disk,” in Optical Data Storage Proceedings, San Diego, 1995, SPIE.

    Google Scholar 

  34. A. Pu and D. Psaltis, “Shift-multiplexed holographic 3-D disk system,” in International Symposium on Optical Memory and Optical Data Storage, Maui, Hawaii, 1996.

    Google Scholar 

  35. D. Psaltis, “Parallel optical memories,” Byte, 17(9):179, 1992.

    Google Scholar 

  36. F.H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett., 18(11):915–917, 1991.

    Article  ADS  Google Scholar 

  37. A. Pu, K. Curtis, and D. Psaltis, “A new method for holographic data storage in photopolymer films,” in IEEE Nonlinear Optics: Materials, Fundamentals and Applications, Waikoloa, Hawaii, 1994.

    Google Scholar 

  38. S. Campbell, X.M. Yi, and P. Yeh, “Hybrid sparse-wavelength angle multiplexed optical data storage system,” Opt. Lett., 19(24):2161–2163, 1994.

    Article  ADS  Google Scholar 

  39. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am., 273(5):70–76, 1995.

    Article  ADS  Google Scholar 

  40. A. Pu and D. Psaltis, “High density recording in photopolymer-based holographic 3-D disks,” Appl. Opt., 35(14):2389–2398, 1996.

    Article  ADS  Google Scholar 

  41. A. Pu and D. Psaltis, “Holographic 3-D disks using shift multiplexing,” in Summaries of Papers Presented at CLEO’96, p. 165, Baltimore, MD, 1996.

    Google Scholar 

  42. A. Pu and D. Psaltis, “Holographic data storage with 100 bits/µm2 density,” in Optical Data Storage Topical Meeting, pp. 48–49, Tuscon, AZ, 1997.

    Chapter  Google Scholar 

  43. F.H. Mok, M.C. Tackitt, and H.M. Stoll, “Storage of 500 high-resolution holograms in a LiNbo3 crystal,” Opt. Lett., 16(8):605–607, 1991.

    Article  ADS  Google Scholar 

  44. J.F. Heanue, M.C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science, 265(5173):749–752, 1994.

    Article  ADS  Google Scholar 

  45. I. McMichael, W. Christian, D. Pletcher, T.Y. Chang, and J. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt., 35(14):2375–2379, 1996.

    Article  ADS  Google Scholar 

  46. J.-J.P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett., 22(8):552–554, 1997.

    Article  ADS  Google Scholar 

  47. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, Hermann & Wiley-Interscience, Paris, France, 1977.

    Google Scholar 

  48. J.D. Jackson, Classical Electrodynamics, J. Wiley & Sons, 2nd edition, 1975.

    MATH  Google Scholar 

  49. M. Born and E. Wolf, Principles of Optics, Pergamon Presss, 6th edition, 1980.

    Google Scholar 

  50. G. Barbastathis and D.J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE., 87(12):2098–2120, 1999.

    Article  Google Scholar 

  51. C. Kittel, Introduction to Solid-State Physics, J. Wiley, 6th edition, 1986.

    Google Scholar 

  52. J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, 2nd edition, 1996.

    Google Scholar 

  53. B. Markov, Yu.N. Denisyuk, and R. Ameskuita, “Three-dimensional displacement speckel hologram and its information capacity,” Optika i Spektroskopiya, 84(4):666–671, 1998.

    Google Scholar 

  54. C.X.-G. Gu, Optical neural networks using volume holograms, PhD thesis, California Institute of Technology, 1990.

    Google Scholar 

  55. G. Barbastathis, Intelligent holographic databases, PhD thesis, California Institute of Technology, 1998.

    Google Scholar 

  56. D. Psaltis, D. Brady, X.G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature, 343(6256):325–330, 1990.

    Article  ADS  Google Scholar 

  57. X. An and D. Psaltis, “Experimental characterization of an angle-multiplexed holographic memory,” Opt. Lett., 20(18):1913–1915, 1995.

    Article  ADS  Google Scholar 

  58. R.A. Miller, G.W. Burr, Y.-C. Tai, D. Psaltis, C.-M. Ho, and R.R. Katti, “Electromagnetic MEMS scanning mirrors for holographic data storage,” in Solid-State Sensor and Actuator Workshop, Tranducer Res. Found., pp. 183–186, Cleveland Heights, OH, 1996.

    Google Scholar 

  59. R.A. Miller, G.W. Burr, Y.-C. Tai, and D. Psaltis, “Magnetically actuated micromirrors for use as optical deflectors,” in Proceedings of the Fourth International Symposium on Magnetic Materials, Processes, and Devices. Applications to Storage and Microelectromechanical Systems (MEMS). Eletrochem. Soc., pp. 474–481, Pennington, NJ, 1996.

    Google Scholar 

  60. R.A. Miller, G.W. Burr, Y.-C. Tai, and D. Psaltis, “A magnetically actuated mems scanning mirror,” in SPIE Proceedings: Miniaturized Systems with MicroOptics and Micromechanics, pp. 47–52, San José, CA, 1996.

    Google Scholar 

  61. X. Wang, D.W. Wilson, R.E. Muller, P.D. Maker, and D. Psaltis, “Liquidcrystal based grating beam deflector,” SPIE Proc., 3468:20–29, 1998.

    Article  Google Scholar 

  62. D. Brady, K. Hsu, and D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett., 15(14):817–819, 1990.

    Article  ADS  Google Scholar 

  63. Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, and R.R. Neurgaonkar, “Phaselocked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys., 70(8):4646–4648, 1991.

    Article  ADS  Google Scholar 

  64. H. Sasaki, Y. Fainman, J.E. Ford, and S.H. Lee, “Dynamic photorefractive optical memory,” Opt. Lett., 16(23):1874–1876, 1991.

    Article  ADS  Google Scholar 

  65. Y. Qiao and D. Psaltis, ““Sampled dynamic holographic memory,” Opt. Lett., 17(19):1376–1378, 1992.

    Article  ADS  Google Scholar 

  66. S. Boj, G. Pauliat, and G. Roosen, “Dynamic holographic memory showing readout, refreshing, and updating capabilities,” Opt. Lett., 17(6):438–440, 1992.

    Article  ADS  Google Scholar 

  67. T. Dellwig, C. Denz, T. Rauch, and T. Tschudi, “Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation,” Opt. Commun., 119:333–340, 1995.

    Article  ADS  Google Scholar 

  68. K. Büse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature, 393(6686):665–668, 1998.

    Article  ADS  Google Scholar 

  69. A. Yariv, Optical Electronics, Sounders College, 4th edition, 1991.

    Google Scholar 

  70. J.-J.P. Drolet, G. Barbastathis, and D. Psaltis, “Integrated optoelectronic interconnects using liquid-crystal-on silicon VLSI,” in R.T. Chen and P.S. Guilfoyle, editors, Optoelectronic Interconnects and Packaging, SPIE Proceedings, volume CR-62, pp. 106–131, 1996.

    Google Scholar 

  71. J. Mumbru, G. Zhou, S. Ay, X.An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” to appear in SPIE Proceedings.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbastathis, G., Psaltis, D. (2000). Volume Holographic Multiplexing Methods. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics