Skip to main content

Hologram Fixing and Nonvolatile Storage in Photorefractive Materials

  • Chapter
Holographic Data Storage

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

Abstract

Virtually all volume holographic recording materials require a fixing process to reduce or eliminate their sensitivity to light of the recording wavelength as they are being read out. This is true because illuminating the medium with light of the readout wavelength will ultimately either erase the recorded information, as in the case of photorefractive crystals, or deplete the dynamic range and cause spurious “noise gratings” that reduce the SNR to unacceptable levels, as in the case of photopolymers. This problem appears to be intrinsic to holographic media because the materials have to have a linear response in order to record superimposed (multiplexed) volume holograms with a minimum of scatter. Fixing is not an issue in established two-dimensional optical data storage materials (e. g. magneto-optic, phase change) because they use highly nonlinear thermal recording mechanisms, so that the information can be read nondestructively at lower powers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.J. Amnodei and D.L. Staebler, Appl. Phys. Lett. 18, 540 (1971).

    Article  ADS  Google Scholar 

  2. D. Kirillov and J. Feinberg, Opt. Lett. 16, 1520 (1991).

    Article  ADS  Google Scholar 

  3. G. Montemezzani and P. Günter, J. Opt. Soc. Am. B 7, 2323 (1990).

    Article  ADS  Google Scholar 

  4. V. Leyva, D. Engin, X.-L. Tong, M. Zhang, A. Yariv, and A. Agranat, Opt. Lett. 20, 1319 (1995).

    Article  ADS  Google Scholar 

  5. H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, Solid State Commun. 57, 543 (1981).

    Article  Google Scholar 

  6. A. Yariv, S. Orlov, G. Rakuljic, and V. Leyva, Opt. Lett. 20, 1334 (1995).

    Article  ADS  Google Scholar 

  7. A. Yariv, S. Orlov, and G. Rakuljic, J. Opt. Soc. Am. B 13, 2513 (1996).

    Article  ADS  Google Scholar 

  8. G. Montemezzani, M. Zgonik and P. Günter, J. Opt. Soc. Am. B 10, 171 (1993).

    Article  ADS  Google Scholar 

  9. S. Orlov, D. Psaltis, and R.R. Neurgaonkar, Appl. Phys. Lett. 63, 2466 (1993).

    Article  ADS  Google Scholar 

  10. M. Carrascosa and F. Agullo-Lopez, J. Opt. Soc. Am. B 7, 2317 (1990).

    Article  ADS  Google Scholar 

  11. R. Matull and R.A. Rupp, J. Phys. D 21, 1556 (1988).

    Article  ADS  Google Scholar 

  12. V.V. Kulikov and S.I. Stepanov, Sov. Phys. Solid State 21, 1849 (1979).

    Google Scholar 

  13. P. Hertel, K.H. Ringhofer, and R. Sommerfeldt, Phys. Status Solidi A 104, 855 (1987).

    Article  ADS  Google Scholar 

  14. W. Bollman and H.J. Stöhr, Phys. Status Solidi A 39, 477 (1977).

    Article  ADS  Google Scholar 

  15. L. Arizmendi, P.D. Townsend, M. Carrascosa, J. Baquedano and J.M. Cabrera, J. Phys. Cond. Matter 3, 5399 (1991).

    Article  ADS  Google Scholar 

  16. M. Carrascosa and L. Arizmendi, J. Appl. Phys. 73, 2709 (1993).

    Article  ADS  Google Scholar 

  17. R. Müller, L. Arizmendi, M. Carrascosa, and J.M. Cabrera, J. Appl. Phys. 77, 308 (1995).

    Article  ADS  Google Scholar 

  18. O.F. Schirmer, O. Thiemann, and M. Wöhlecke, J. Phys. Chem. Solids 52, 185 (1991).

    Article  ADS  Google Scholar 

  19. T.R. Volk, N. Rubinina, and M. Wöhlecke, J. Opt. Soc. Am. B 11, 1681 (1994).

    Article  ADS  Google Scholar 

  20. S. Klauer, M. Wöhlecke, and S. Kapphan, Phys. Rev. B 45, 2786 (1992).

    Article  ADS  Google Scholar 

  21. J.R. Herrington, B. Dischler, A. Rauber, and J. Schneider, Solid State Commun. 12, 351 (1973).

    Article  ADS  Google Scholar 

  22. A. Yariv, V. Leyva, and G.A. Rakuljic, “Relaxation and lifetime of ’fixed’ charge holograms,” in Technical Digest, 1994 IEEE Nonlinear Optics, Materials, Fundamentals, and Applications, Waikoloa, Hawaii, post-deadline paper PD6.

    Google Scholar 

  23. D.L. Staebler, W.J. Burke, W. Phillips, and J.J. Amodei, Appl. Phys. Lett. 26, 182 (1975).

    Article  ADS  Google Scholar 

  24. A. Mehta, E.K. Chang, and D.M. Smyth, J. Mater. Res. 6, 851 (1991).

    Article  ADS  Google Scholar 

  25. P.F. Bordui, R.G. Norwood, D.H. Jundt, and M.M. Fejer, J. Appl. Phys. 71, 875 (1992).

    Article  ADS  Google Scholar 

  26. D.H. Jundt, M.M. Fejer, R.G. Norwood, and P.F. Bordui, J. Appl. Phys. 72, 3468 (1992).

    Article  ADS  Google Scholar 

  27. S.C. Abrahams and P. Marsh, Acta Crystallogr. Sec B 42, 61 (1986).

    Article  Google Scholar 

  28. U. Schlarb and K. Betzler, Phys. Rev. B 48, 15613 (1993).

    Article  ADS  Google Scholar 

  29. L. Kovàcs and K. Polgár, sdfg in Properties of Lithium Niobate, EMIS Datareview series No 5, p. 109, RN-16037 (1989).

    Google Scholar 

  30. F.H. Mok, G.W. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).

    Article  ADS  Google Scholar 

  31. F. Micheron and G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).

    Article  ADS  Google Scholar 

  32. F. Micheron and G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).

    Article  ADS  Google Scholar 

  33. A.G. Chynoweth, Phys. Rev. 102, 705 (1956).

    Article  ADS  Google Scholar 

  34. R. Landauer, J. Appl. Phys. 28, 227 (1957).

    Article  ADS  Google Scholar 

  35. D. von der Linde, A.M. Glass, and K.F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).

    Article  ADS  Google Scholar 

  36. Y.-S. Bai and R. Kachru, Phys. Rev. Lett. 78, 2944 (1997).

    Article  ADS  Google Scholar 

  37. D.L. Staebler, W. Phillips, Appl. Phys. Lett. 24, 268 (1974).

    Article  ADS  Google Scholar 

  38. K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).

    Article  ADS  Google Scholar 

  39. S.S. Orlov, A. Akella, L. Hesselink, and R.R. Neurgaonkar, “High sensitivity two-photon non-volatile recording in lithium niobate,” Conference on Lasers and Electro-Optics ’1997 (Optical Society of America), Baltimore, MD, postdeadline paper CPD29.

    Google Scholar 

  40. L. Hesselink, S.S. Orlov, A. Liu, A. Akella, D. Lande, and R.R. Neurgaonkar, Science 282, 1089 (1998).

    Article  ADS  Google Scholar 

  41. D. Lande, S.S. Orlov, A. Akella, L. Hesselink, and R.R. Neurgaonkar, Opt. Lett. 22, 1722 (1997).

    Article  ADS  Google Scholar 

  42. P. Nagels, The Hall Effect and its Applications, edited by C.L. Chien and C.R. Westgate, Plenum, New York, 1980.

    Google Scholar 

  43. J. Koppitz, A.I. Kuznetsov, O.F. Schirmer, M. Wöhlecke, and B.C. Grabmaier, Ferroelectrics 92, 233 (1989).

    Article  Google Scholar 

  44. Stoichiometric lithium niobate crystals with varying Fe concentrations grown by continuous charge double crucible Czochralski (DCCZ) method were provided to us by the National Institute for Research in Inorganic Materials in Japan (Dr. K. Kitamura).

    Google Scholar 

  45. F. Jermann, M. Simon, and E. Kratzig, J. Opt. Soc. Am. B 12, 2066 (1995).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orlov, S.S., Phillips, W. (2000). Hologram Fixing and Nonvolatile Storage in Photorefractive Materials. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics